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Figure 1:  Photo of pieces of 72275. Note thin patina and surface exposure of “Marble 
Cake” clast. NASA# S73-16077. Small cube is 1 cm. 

Introduction 
Lunar sample 72275 is a friable feldspathic breccia 
with an aphanitic matrix and several important clasts 
(figure 1). It was collected from the top of a layered 
boulder (#1), located within a landslide from the South 
Massif at the Apollo 17 site (Marvin 1975, Schmitt 
1975) and is generally thought to represent ejecta from 
the Serenitatis basin (Dalrymple and Ryder 1996) 
(however, see evidence to the contrary in the paper by 
Morgan et al. 1975).  The boulder may have rolled down 
the slope of the South Massif after the emplacement 
of the landside, but there are no boulder tracks visible 
today so it is difficult to tell where exactly it came 
from (Wolfe 1975). 

72275 was specifically collected from boulder 1, 
because it appeared to be representative of the matrix 
of the boulder.  It was found that the chemical 
composition of 72275 matrix had higher trace element 
content than for the other three samples of this boulder 
(figure 2). This sample has a wide variety of clast types 

derived from the lunar highlands (Stoeser et al. 1974, 
Ryder et al. 1977, Salpas et al. 1987, 1988).  It has a 
high trace element content due to a high abundance of 
KREEPy non-mare basalt. It doesn’t contain any of 
the high-Ti mare material from the valley floor and is 
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Figure 2:  Composition of matrix of 72275 with that 
of other samples from same boulder (#1).  Data from 
Blanchard et al. (1975). 
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Figure 3:  Photomicorgaphs of same area of thin 
section 72275,148: a) transmitted light, b) polarized 
light, c) reflected light.  Note basalt clast in corner. 
Note also the porosity of matrix; best seen in reflected 
light. Scale is 1.4 mm across. 

not a regolith breccia. The matrix and many of the 
clasts contain significant Ir and Au contents indicating 
meteorite contamination. It is clast rich and somewhat 
akin to the Apollo 14 breccias. 
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Figure 4:  Pyroxene and olivine compositions in 
matrix of 72275 (from Stoeser et al. 1974 and 
Ryder et al. 1975). 

This sample has a breccia-in-breccia texture where 
clasts of darker microbreccia are included in the light 
feldspathic matrix (figure 4). The major mineral in 
the matrix is feldspar.  The darker areas have a higher 
percentage of fine matrix to clasts (Willis 1985). 
Portions of the light friable matrix of sample 72275 
are very porous (5 to 30 percent). 

The first slab cut from 72275 was the object of study 
by the “Consortium Indomitabile” (John Wood, leader). 
Two additional slabs were cut from 72275 for the 
“breccia-pull-apart” study led by Larry Taylor (Salpas 
et al. 1985). Ryder (1993) provided a comprehensive 
review of all aspects of 72275. Recently, Nemchin et 
al. (2008) dated 18 zircons from 72275 ranging in age 
from 4.24 to 4.37 b.y., while another zircon from this 
boulder was found to be as old as 4.417 b.y. (Nemchin 
et al. 2009). 

Clast Population 72275 (from Stoeser et al. 1974) 
Granulitic ANT breccias 48 % 
Granulitc polygonal anorthosite 3.5 
Crushed anorthosite 5.1 
Devitrified glass 7.9 
Glass shards 0.4 
Ultramafic particles 1.6 
Basaltic troctolite 2.0 
Pigeonite basalt 5.1 
Other basaltic 2 
Granite  1.6 
Norite  0.4 
Plagioclase  15 
Mafic minerals 5.5 
Opaques  1.2 
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clast # 2 

clast # 3 

Figure 5:  Front and back of first slab (,42) cut from 72275.  NASA# S73-32623-32624. Cube 
is 1 inch. 
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clast #1 
“Marble 
Cake” 

Figure 6:  East and West face of slab 72275,328 prepared for Taylor consortium, 1984.  NASA # S84-45542 
and S85-29430. Cube is 1 inch. The “Marble Cake” clast studied by the Consortium Indomitabile is seen in 
this slab as well. 
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Figure 7:  Thin section photomicrograph and 
pyroxene quadrillaterile for Marble Cake clast 
(from Consortium Indomitabile vol 2). 
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Figure 8:  Pyroxene and olivine composition of 
small ganulitic feldspathic clasts in 72275 
(from Salpas et al. 1988). 

Petrography 
72275 is a polymict breccia with about 60% light 
porous matrix and 40% clasts. The majority of the 
clasts are dark aphanitic microbreccia, but also include 
non-mare basalt and feldspathic, plutonic fragments 
of the lunar crust. The light matrix of 72275 is a porous 
aggregate of angular mineral and lithic fragments 
ranging in size up to 0.1 mm (Marvin 1975). Calcic 
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feldspar (An ) is the dominant mineral phase. The92-98
compositions of olivine and pyroxene mineral 
fragments in the matrix are given in figure 4. 

The dark grey aphanitic clasts are dense and themselves 
microbreccias (see clasts 2 and 3 below) and equivalent 
to the majority of the material in the other samples of 
the boulder (72215, 72235, 72255). 

A light colored zone through the sample is made up 
almost entirely of crushed non-mare basaltic material. 
The non-mare basalt clasts are fine-grain pigeonite 
basalts (equivalent to KREEPy basalt), with about 
equal amounts of pyroxene and plagioclase (figure 10). 

There are a number of other rock types present in the 
clast population of 72275 including: ilmenite 
micrograbbro, pink spinel troctolite basalt, granulitic 
feldspathic clasts and at least one ferroan anorthosite 
(otherwise rare for Apollo 17) (Ryder et al. 1975, Salpas 
et al. 1988). Some of the larger clasts were analyzed 
and are discussed individually below. 

Clast 1 Marble Cake Clast (,566) 
The very prominent clast known as the “Marble Cake 
Clast” (seen in figures 6 and 27) is 3 cm in size with 
cataclastic gabbroic anorthosite and other material 
crudely interlayer with grey breccia and trace-element­
rich, dark rim material (figure 7). The white core 
material is a mix of anorthositic norite, ilmenite 
micrograbbo, granite and other small lithic fragments 
with various textures. These are swirled with vesicular 
glass as if lightly stirred in a marble cake (Ryder et al. 
1975). The black rim of the Marble Cake clast (,80) 
has the composition of KREEP basalt (Blanchard et 
al. 1975). Nunes and Tatsumoto (1975) found that their 
split of the marble cake clast plotted well off of the U/ 
Pb discordia line defined by the other boulder samples. 

Clasts 2 and 3  Dark gray aphanitic clasts (,42) 
These large (1 cm?) dark aphanitic clasts are seen in 
figures 5 and 6. Blanchard et al. (1975) found that 
clast 2 (,83) had a trace element pattern similar to 
KREEP, but Morgan et al. (1975) determined 3.44 ppb 
Ir (non pristine). Leich et al. (1975) obtained an Ar 
release pattern, but could not determine the age. 

Clast 4  Pigeonite Basalt (,170) 
Pigeonoite basalts (later termed KREEPy Apollo 17 
basalts) have equal amounts of pyroxene and 
plagioclase and are trace element rich. Compston et 
al. (1975) and Nunes and Tatsumoto (1975) studied 
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Figure 9:  Thin section photomicrograph of  typical 
KREEPy “pigeonite basalt in 72275. 

the same pigeonite basalt (there is some confusion as 
to which clast this is). Compston et al. obtained an 
isochron age (figure 15). 

Clast 5 Pigeonite Basalt (,91) 
Blanchard et al. (1975), Morgan et al. (1975) analyzed 
another pristine clast of pigeonite basalt (figure 12). 
Ryder et al. (1977) and others have studied these non-
mare basalts in detail and determined their mineralogy 
(figure 10). Unlike the Apollo 14 and 15 non-mare 
basalts, the “pigeonite basalts” in 72275 do not have 
orthopyroxene cores. Leich et al. (1975) determined 
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Figure 11:  Pyroxene in feldspathic clast in 72275 
(from Salpas et al. 1988). 

Figure 10:  Pyroxene and plagioclase composition in 
pigeonite basalt clast (KREEP). Data replotted from 
Ryder et al. (1975).  Similar data can be found in 
Salpas et al. (1987). 

Figure 12:  Thin section photomicrograph of granu-
litic feldspathic clast in 72275 (borrowed from 
Consortium Indomitabile). The figure illustrates 
calcic plagioclase surrounded by mafic minerals (see 
figure 8). 
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Table 1.  Chemical composition of 72275 matrix. 

reference LSPET 73 Rose 74 Hubbard 74 Blanchard 75 Morgan 75 Jovanovic 75  Salpas 87 
weight ,2 ,90 ,2 ,57 ,413 ,417 ,423 
SiO2 % 47.54 (a) 47.31 (f) 48.3 
TiO2 0.91 (a) 0.94 (f) 1 
Al2O3 17.01 (a) 16.9 (f) 16.3 
FeO 11.58 (a) 12.45 (f) 11.9 14.5 15.05 15.16 (d) 
MnO 0.18 (a) 0.19 (f) 0.17 
MgO 9.35 (a) 9.47 (f) 10.3 
CaO 11.71 (a) 11.72 (f) 11 10.1 10.3 12.1 (d) 
Na2O 0.38 (a) 0.35 (f) 0.36 (c ) 0.44 0.42 0.38 0.37 (d) 
K2O 0.28 (a) 0.22 (f) 0.28 (b) 0.25 
P2O5 0.35 (a) 0.38 (f) 
S % 0.08 (a) 
sum 

Sc ppm 40 (f) 44.7 (d) 45.7 48.6 49.8 (d) 
V 75 (f) 
Cr 2330 (f) 2395 (d) 3062 3088 3255 (d) 
Co 37 (f) 30.4 (d) 31.3 33.3 35.3 (d) 
Ni 67 (a) 127 (f) 75 (d) 95 (e) 12 55 <110 (d) 
Cu 5.4 (f) 
Zn 3 (a) 2.7 (e) 
Ga 3.2 (f) 
Ge ppb 406 (e) 
As 
Se ppb 34 (e) 
Rb 8.7 (a) 4.6 (f) 8.97 (b) 5.9 (e) 13 12 14 (d) 
Sr 121 (a) 135 (f) 123 (b) 138 93 <160 (d) 
Y 129 (a) 88 (f) 
Zr 613 (a) 545 (f) 605 (b) 600 765 700 (d) 
Nb 32 (a) 24 (f) 
Mo 
Ru 
Rh 
Pd ppb 
Ag ppb 0.74 (e) 
Cd ppb 13 (e) 
In ppb 
Sn ppb 
Sb ppb 1.17 (e) 
Te ppb 4.14 (e) 
Cs ppm 0.255 (e) 0.37 0.4 0.44 (d) 
Ba 330 (f) 350 (b) 370 400 400 (d) 
La 35 (f) 41 (b) 50.5 (d) 47.9 50.2 52.3 (d) 
Ce 106 (b) 130 (d) 129 133 139 (d) 
Pr 
Nd 67.4 (b) 80 81 85 (d) 
Sm 18.8 (b) 24.6 (d) 22.2 23.5 25.5 (d) 
Eu 1.49 (b) 1.57 (d) 1.62 1.66 1.68 (d) 
Gd 23.4 (b) 
Tb 4.9 (d) 4.59 4.97 5.1 (d) 
Dy 23.2 (b) 
Ho 
Er 13.7 (b) 
Tm 
Yb 9.2 (f) 11.6 (b) 15 (d) 13.5 13.9 13.1 (d) 
Lu 1.71 (b) 2.01 (d) 1.73 1.8 1.9 (d) 
Hf 14.6 (b) 16.5 (d) 16.4 17.2 17.9 (d) 
Ta 1.7 (d) 1.55 1.66 1.58 (d) 
W ppb 
Re ppb 0.225 (e) 
Os ppb 
Ir ppb 2.26 (e) <2 <2 <2 (d) 
Pt ppb 
Au ppb 0.82 (e) <5 <7 <6 (d) 
Th ppm 5.29 (b) 5.52 5.46 6.01 (d) 
U ppm 1.56 (b) 1.5 (e) 1.6 1.3 1.58 1.26 (d) 
technique: (a) XRF, (b) ID/MS, (c ) AA, (d) INAA, (e) RNAA, (f) varied 
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Table 2.  Chemical composition of clasts in 72275. 
anorthosite pigeonite basalt  marble cake KREEP basalt granulite 

reference Salpas 88 Blanchard 75 Morgan 75 Blanchard 75  Salpas 87 Salpas 88 
weight FAN ,350 PB ,91 PB ,91 clast,80 clast 1 ,385 ,357 ,427b ,397 ,433 
SiO2 % 48 (a) 47 47 47 51.3 48.3 
TiO2 1.4 (a) 1.8 1.1 1.8 1.54 1.2 0.22 0.15 
Al2O3 13.5 (a) 17.9 18.2 23.5 14.5 12.5 26.2 24.6 
FeO 0.485 (a) 15 (a) 10.3 10.9 7.4 15.18 13.9 16.5 5.71 5.1 
MnO 0.156 (a) 0.104 0.17 0.08 0.17 0.22 
MgO 10 (a) 9.43 9.14 5.24 6.8 11.4 7.9 8 
CaO 19.2 (a) 10.5 (a) 11.7 11.2 14.2 9.1 10.8 9.5 14.8 14.2 
Na2O 0.456 (a) 0.29 (a) 0.39 0.63 0.36 0.35 0.51 0.415 0.353 0.362 
K2O 0.25 (a) 0.47 0.49 0.32 
P2O5 
S % 
sum 

Sc ppm 1.12 (a) 61 (a) 34 26.3 25 50 51 45.5 7.81 8.24 
V 97 135 20 24 
Cr 46.6 (a) 3147 (a) 3147 3170 1960 4420 842 881 
Co 0.44 (a) 37 (a) 28 22.5 18.7 35.1 30.9 46.4 39.3 30.6 
Ni <7 (a) 43 (b) 130 50 <80 112 455 422 
Cu 
Zn 2.7 (b) 
Ga 
Ge ppb 1290 (b) 
As 
Se 0.23 (b) 
Rb 8 (b) 14 12 12 
Sr 205 (a) 93 92 98 160 160 
Y 
Zr 800 610 540 
Nb 
Mo 
Ru 
Rh 
Pd ppb 
Ag ppb 0.58 (b) 
Cd ppb 8.3 (b) 
In ppb 
Sn ppb 
Sb ppb 2.87 (b) 
Te ppb 7.8 (b) 
Cs ppm 0.016 (a) 0.355 (b) 0.55 0.4 0.3 0.19 0.23 
Ba 40 (a) 440 500 365 72 87 
La 0.567 (a) 48 (a) 78 78 48 52.5 61.7 46.2 3.66 4.72 
Ce 1.48 (a) 131 (a) 213 206 131 140 155 121 10.1 12.6 
Pr 
Nd <2.5 (a) 92 108 75 5.7 6.2 
Sm 0.228 (a) 23 (a) 36 36 22.5 23.8 28.9 22.3 1.56 1.93 
Eu 0.928 (a) 1.58 (a) 2.14 2.1 1.81 1.62 1.87 1.45 0.835 0.86 
Gd 
Tb 0.045 (a) 4.5 (a) 7.7 7.7 4.7 4.9 5.82 4.31 0.375 0.49 
Dy 
Ho 
Er 
Tm 
Yb 0.125 (a) 11.9 (a) 24 25.4 13.9 13.8 15.5 12.4 1.69 2.06 
Lu 0.02 (a) 1.75 (a) 3.5 3.5 2.04 1.83 2.18 1.67 0.238 0.292 
Hf 0.133 (a) 18 (a) 19.8 25.1 14 17.4 20.5 15.9 1.46 1.98 
Ta 0.015 (a) 3.5 1.62 1.9 1.37 0.302 0.309 
W ppb 
Re ppb 0.007 (b) 
Os ppb 
Ir ppb <2 (a) 0.023 (b) <2 16.4 14 
Pt ppb 
Au ppb <0.8 (a) 0.045 (b) <7 6.8 6.5 
Th ppm 0.047 (a) 12.8 5.98 6.73 5.25 1.17 2.06 
U ppm 0.02 (a) 1.5 (b) 1.3 1.95 1.45 0.34 0.37 
technique (a) INAA, (b) RNAA 
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an Ar release plateau, but were not able to determine 
an age. 

KREEP basalt clasts 
Ryder (1977) and Salpas et al. (1987) describe several 
KREEP basalt clasts, several of which had a subophitic 
basaltic texture (figure 9). They equate these to the 
KREEPy pigeonite basalt clasts previous studied. A 
large number of these clasts, including two with pristine 
igneous texture, were analyzed by Salpas et al. (1987). 
Shih et al. (1992) were able to obtain one of the 
brecciated KREEP basalt clasts and date it by both Rb-
Sr and Sm-Nd (figures 16 and 17). 

Ferroan Anorthosite Clast  (,350) 
A unique fragment of pristine ferroan anorthosite was 
studied by Salpas et al. (1988). It was 3 x 4 x 5 mm 
and composed of 95% plagioclase (An96) and 5% 
pyroxene (figure 12). The chemical composition is 
given in table 2 and this clast is apparently plutonic 
and pristine (Ir<2 ppb). Since this is what we think 
the lunar crust was made of, we are surprised to not 
find more fragments of this kind in the ejecta of large 
impacts. 

Granulitic ANT Clasts 
The Consortium Indomitabile coined the acronym ANT 
for the small fragments of plagioclase-rich, potash and 
phosphorous-poor rocks whose mineralogies vary over 
the range anorthosite-norite-troctolite (never mind the 
otherwise small grain size). In 72275 the textures of 
these feldspathic clasts are that of an annealed granulite 
(figure 12). Salpas et al. (1988) discovered several 
that were large enough to analyze (table 2, figure 13). 
However, they were all high in Ir. 

Granite Clast 
Meyer et al. (1996) featured a large coase-grained 
granite clast on the cover of meteoritics (figure 30). 

Mineralogy 
The mineral fragments in the matrix are, in order of 
abundance: plagioclase, olivine, orthopyroxene, 
pigeonite, Ca-rich clinopyroxene, ilmenite, spinel, 
cristobalite, barian K-feldspar, Fe metal, troilite, zircon 
and armalcolite (Stoeser et al. 1974). 

Chemistry 
Chemical analyses of the matrix of 72275 are given in 
table 1 and of selected clasts in table 2. In addition 
there are a number of analyses of small clasts in thin 
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Figure 13:  Normalized rare-earth-element 
diagram for matrix and selected clasts in breccia 
sample 72275. Data for matrix and pigeonite 
basalt is from Blanchard et al. (1975), and for 
clasts Salpas et al. (1987, 1988). 

section by broad-beam, electron probe microanalyses 
in the papers by Ryder et al. (1975) and Stoeser et al. 
(1975). Salpas et al. (1987, 1988) present the analyses 
of a large number of clasts (mostly KREEP basalt and 
granulitic feldspathic clasts (ranges shown in figure 
13). 

The composition of the light matrix of 72275 is broadly 
similar to that of the pigeonite basalt clasts (Salpas et 
al. 1987). There is a hint of slightly elevated Al, which 
would be expected by the presence of anorthositic 
clasts. 

The trace siderophile element ratios (Morgan et al. 
1975) are not exactly what is expected for Serenitatis 
ejecta. Ge is very high, and there is evidence that this 
is from the high KREEP component (which is itself 
surprisingly high in Ge). 
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Figure 15:  Rb-Sr isochron diagram ofr pigeonite 
clast in 72275 (from Compston et al. 1975). 

Figure 14:  Ar-Ar release pattern for 72275,80. 
Plateau age is 3.99 +/- 0.03 b.y. (from Leich et 
al. 1975). Figure 16:  Rb-Sr isochron diagram for KREEP 

basalt clast in 72275 (from Shih et al. 1992). 
Radiogenic age dating 
Compston et al. (1975) and Shih et al. (1992) found 
that the age of the KREEPy basalt clasts in 72275 to 
be about 200 m.y. older than the ages of KREEP 
basalts from Apollo 15 (such as 15382, 15386). 
Nunes and Tatsumoto (1975) attemped to date various 
chips of 72275 for the consortium by U-Th-Pb, but 
learned instead that the breccia and its clasts has 
suffered extensive movement of Pb.  Leich et al. 
(1975) also attempted to obtain Ar-Ar dates, but found 
that plateau ages were ill defined except for one case. 
(please note that dates reported here are the original 
data and require correction for new decay constants) Figure 17:  Sm-Nd isochron diagram for 

KREEP basalt clast in 72275 (from Shih et al. 
1992). 

Summary of Age Data for 72275 
Ar-Ar Rb-Sr Sm-Nd 

Leich et al. 1975 3.99 ± 0.04 b.y. Rim of Marble Cake 
Compston et al. 1975 4.01± 0.04 Pigeonite basalt ,171 
Shih et al. 1992 4.13 ± 0.08 4.08 ± 0.07 KREEP basalt clast B-1 
Nemchin et al. 2008 4.24 – 4.37 b.y. Pb/Pb Zircons 
Grange et al. 2009 
Caution: Beware decay constants! 
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Figure 19:  Sketch of slabs cut from 72275,102 
in 1984. 

(1977) have reported the spectra. 

Figure 20:  Sketch of slab ,42 cut in 1972. This was the Wood consortium.  The Marble Cake clast was called clast #1. 

Figure 18:  Exposure ages by the Kr81 method 
from Leich et al. 1975. 

Other Studies 
Pearce et al. (1974), Brecher et al. (1974) and 
Banerjee and Swits (1975) determined the 
magnetic properties of 72275. Housley et al. 
(1977) included 72275 in their study of 
ferromagnetic resonance of lunar samples (it 
had none). 

Goswami and Hutcheon (1975) and Goswami 
et al. (1977) studied the track densities in 
minerals from 72275. Charette and Adams 

Nemchin et al. (2008) and Grange et al. (2009) have 
dated numerous zircons extracted from the sawdust of 
72275 and other rocks. 

Cosmogenic isotopes and exposure ages 
Leich et al. (1975) determined the exposure age of 
72275 and other samples of the same boulder by a 
number of techniques, of which 81Kr are the most 
reliable (figure 18). The conclusion is that 72275 (from 
the top of the boulder) has been exposed to cosmic 
rays for 52.5 ± 1.4 m.y. 
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 Figure 21:  Photo and map of west face of second slab (,328) of 72275 (Willis 1985).  S84-41208. The 
large clast is the other half of the Marble Cake Clast studied by Marvin et al. 1973. (see figure27) 
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  Figure 22:  Photo and map of east face of second slab (,328) of 72275 (Willis 1985).  S84-39544. 
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Figure 23:  Photo and map of west side of third slab (, 337) of 72275 (Willis 1985).  S84-39547 
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Figure 24:  Photo and map of east side of third slab (, 337) of 72275 (Willis 1985).  S84-39546. 
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Figure 25:  Photo and map of west face of 77275,102 (end piece). S84-39545. From Salpas et al. 1985. 
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,337 
Figure 26:  Photo of slab (,337) after subdivision. Cube is 1 inch. S84-46140. (see figure 24) 

,566 
Marble Cake Clast 

Figure 27:  Photo of clasts extracted from slab 72275,328.  S97-16861. Cube is 1 cm. 
(see figure 21).  Subsample ,566 is the other half of the Marble Cake Clast studied by the 
Wood consortium (Ryder 1992). 
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Figure 28:  Thin section photomicrograph of clast 
72275,493. S84-46669. Scale unknown. 

Figure 30:  False color image by BSE of granite clast 
in 72275 (Meyer et al. 1996). Field of view is 4 mm. 
Red is K-felspar, yellow is plagioclase and black is 
silica. 
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Processing 
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