70009 - 70001 Deep Drill Core 3 meters

Figure 1: There are no photos of the crew taking the Apollo 17 deep drill core, but this photo of the site, with the neutron probe in place, shows the effort that must have been expended to obtain the three (3) meter deep drill core. AS17-134-20505. The ALSEP site is just beyond.

- 4 22 11 CDR Man, it didn't feel like this stuff was this hard. See if I can get it out. I may be jacking the treadle down into the surface. Come on baby. I'm going to get this thing out, now that I got it. I hope this core is appreciated. Man, I don't know what it's in.
- 4 22 15 LMP I was afraid that would happen with all this rocks.
- 4 22 15 CDR Yes, but it didn't go in that hard.
- 4 22 27 CDR I've got a delicate core in one hand, and I'm trying to get some core caps on the other. You'd be glad to know it's full, Bob.

Introduction

The Apollo 17 deep drill was collected with great difficulty at the ALSEP site near Camelot Crater and within an area of many small craters known as the Central Cluster (figure 2). The drill core is a continuous section of the top of the regolith, 3 meters long, that represents an historic achievement *(and much appreciated by the science community)*. Drilling the lowest 20 cm was very difficult, because the basal material was very cohesive. Extraction was also very difficult, although for this mission it was facilitated by a specially designed "treadle". A neutron probe was successfully inserted into the open hole (figure 1). Two surface soils were collected nearby – 70180 and 70160.

The drill core "string" for Apollo 17 was broken down and returned in three segments (70009, 70008, 70007) (70006, 70005) and (70004, 70003, 70002, 70001) in a special beta-cloth bag. Apparently the plug inserted into the top of the drill did not function, because a void (10 – 12 cm) was found at the junction of 70008 and 70007 (which were not tightly connected) and core material slid along the core. Indeed, the transcript shows that the crew had difficulty placing the plug in the top of the core and ramming it home. However, it is believed that core recovery was ~100% (Duke and Nagle 1976).

The Apollo 17 deep drill core is not homogeneous along its length. It varies in nuclear track density, maturity, agglutinate content, modal mineralogy and in chemical composition. Vaniman et al. (1979) subdivide the drill string into 5 units A - E (bottom to top), while Taylor et al. (1979) subdivide it into 8 units A - H (top to bottom). The most obvious feature is a relatively coarse layer of immature mare material from about 22 cm to about 71 cm depth (called unit D by Vaniman et al. and unit B by Taylor et al.). (*This confusion can be attributed directly to the editors of the 10th Proceedings; Bogard, Horz and McKay*)

As soon as the drill string was returned to Houston, it was broken down into sections and a small amount was extracted from the tops of the bottom six segments to be put in a freezer where they have been kept cold all these years – see essay titled **70001**.

Interpretation

The data from the Apollo 17 deep drill core has been studied in detail by numerous investigators, who each give it their own interpretation based on their particular

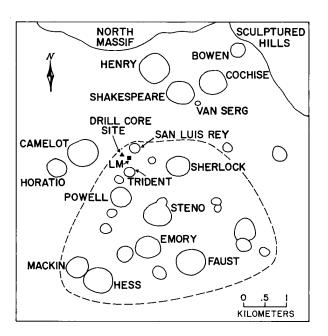


Figure 2: Location of Apollo 17 Deep Drill, about one crater diameter from Camelot, and near numerous craters in middle of mare surface (from Taylor et al. 1979). Note that it is several kilometers from surrounding highland areas.

technique (Taylor et al. 1979, Morris et al. 1979, Vaniman et al. 1979, Goswami and Lal 1979). A synthesis of these models is given in Langevin and Nagle (1980) and McKay et al. (1992).

Arvidson et al. (1977) make the connection between a site-wide "event" about 96 m.y. ago and the deposition of the deep drill core as part of a slab at about 100 m.y. (Curtis and Wasserburg 1975). Drozd et al. (1977) determined that many of the features at Apollo 17 (including the Central Cluster) can be dated at 109 ± 4 m.y. which they associate with the crater Tycho.

Fruchter et al. (1979) found that the Apollo 17 deep drill core had lower than expected values of ²⁶Al and ⁵³Mn at depth (figures 12 and 13) proving that there had been a recent crater at this location, which was filled in recently with previously irradiated surface material.

However, careful nuclear track studies indicate a long exposure and multiple episodes of deposition (Goswami and Lal 1979). A layer at about 240 cm is found to have a high dose of ¹⁵N and ²¹Ne indicating an ancient exposure to the sun (Thiemens and Clayton

Summary mode for A17 d	leep drill according to Vaniman et al. 1979	page 3

Stratigraphic units	А	В	С	D	Ε
Mare basalt	7.5	11.4	9.2	24.3	19.7
Ant	3.4	3.5	2.8	2.0	1.4
RNB/poik	5.0	3.5	3.2	1.1	1.2
DMB	25.9	21.8	23.8	17.2	22.1
Agglutinate	20.8	15.7	23.8	15.9	20.1
Olivine	0.8	1.1	0.8	0.8	1.2
Pyroxene	9.0	7.9	7.8	18.3	15.2
Plagioclase	7.0	7.8	10.6	7.9	7.5
Opaque	2.6	2.7	2.5	3.0	4.0
Orange/black glass	14.6	13.8	10.6	6.9	5.0
Brown/grey glass	0.1	0.1	0.4	0.6	1.4
Clear glass	1.7	4.2	2.8	0.9	0.6
Yellow/green	1.6	6.5	1.9	1.0	0.8
	100.0	100.0	100.2	99.9	100.2
	256-	224-	71-	22-	0 - 22 cr
	284 cm	256 cm	224 cm	71 cm	

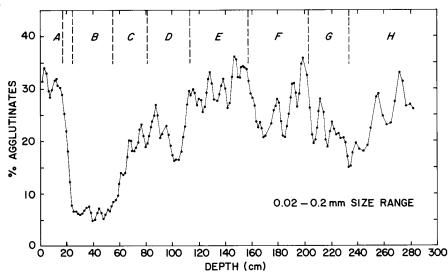
1980). Everyone agrees that the top 22 cm has been gardened by micrometeorite bombardment.

Petrography

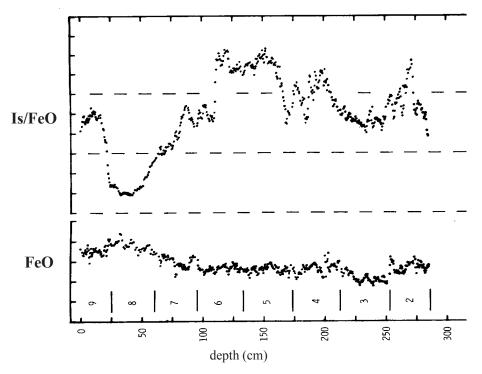
A description of 70001 can be found in the Lunar Core Catalog (1976) pages 17-32 to 17-36. It was 5.5 cm long and was dissected top to bottom (0.5 cm at a time). Each unit was sieved into >1mm, 1-0.125 mm and <0.125 mm. A bottom portion (70001,5; 3.43 g) was placed in deep freeze! Descriptions of 70009, 70008 and 70007 are given by Duke and Nagle (1976). 70005 is described in newsletter #18. During dissection as many as 54 lithologic units were identified, but Nagle and Waltz (1979) eventually grouped these into 6 major units. These descriptions were soon superseded by petrographic study of thin sections.

Housley et al. (1976) showed that the maturity along the length of the deep drill is given by the proportion of agglutinates (figure 3) and the ferromagnetic resonance measurement Is/FeO (figure 4). Vaniman et al. (1979) tabulated the modal abundance of components for different size ranges, concluding that the Apollo 17 deep drill core was made up of 5 distinct units (see table). "The upper unit E (0-22 cm depth) is marked by high content of fused soil, brown glass, and mare fragments. The underlying unit D (22-71 cm depth) has a low abundance of fused soil (i.e. low maturity) and is rich in coarse (>200 micron) mare fragments. A large section of the core, unit C (71-224 cm depth), is finer-grained, more mature (richer in agglutinates), more feldspathic and has more highland lithic, mineral and glass fragments than unit D. The next underlying unit, B (224-256 cm depth), has yellow/

colorless KREEP glasses with a high-Si, low-alkali composition unlike the common Apollo 15 or Apollo 17 KREEP series. The deepest unit, A (256-284 cm depth), is marked by its relatively higher maturity and lower yellow/colorless KREEP glass content". This description is an excellent starting point for a discussion of the core. However, Taylor et al. (1979) see a different set of layers, Morris et al. (1979) have found that the whole lower part of the drill string is mature to submature and Goswami and Lal (1979) have identified various units and events based on careful analysis of nuclear tracks. Thus there is no consensus on where the major subdivisions should be, but it is clear that the core is not well mixed (McKay et al. 1992).


Near the bottom of the core Vaniman and Papike (1977c) found fragments of very-low Ti (VLT) basalt, which is otherwise rare at the Apollo 17 site.

The coarse layer near the top (22 to 71 cm) is the least mature Apollo soil (only 6% agglutinate, Taylor et al. 1979) and is made up of coarse fragments and minerals of ilmenite basalt (Vaniman et al. 1979).


Mineralogical Mode

Detailed mineralogical modes based on petrographic analysis of thin sections were determined by Heiken and McKay (1974), Taylor et al. (1977), Vaniman and Papike (1977b), Taylor et al. (1979) and Vaniman et al. (1979). A summary of the mineralogical mode is given in Vaniman et al. (1979).

Glass: Warner et al. (1979) reported the composition of glass from the top of the drill core. Vaniman et al.

Figure 3: Percentage of agglutinate glass in fine fraction of Apollo 17 deep drill (from Taylor et al. 1979) and showing the lithologic units identified by Taylor et al. (A - H).

Figure 4: Maturity index (Is/FeO) as a function of depth in Apollo 17 deep drill core (Morris 1979).

(1979) reported that a lot of siliceous KREEP glass is to be found in their unit B (224-256 cm).

Chemistry

The chemical composition of the deep drill core has only been measured in gross detail (it is a long core). The main features found so far are a variation in TiO_2 content with depth (figure 7) and an enrichment in trace elements (especially the fines) at about 240 cm (figures 8, 9 and 10).

Ehmann and Ali (1977) measured the top of the core (70009 - 70007). They and others found there to be an abundance of Ti- and Fe-rich basalt in 70008.

Helmke et al. (1973), Laul et al. (1979) and Vaniman et al. (1979) each found a trace-element enriched layer at a depth of about 240 cm. Laul et al. found that the

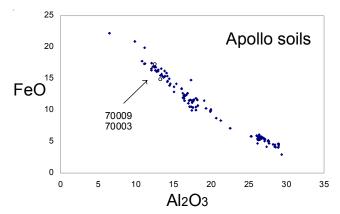
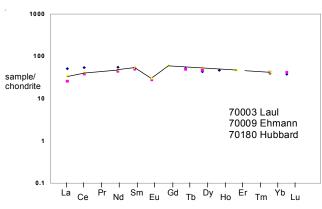


Figure 5: Chemical composition of deep drill samples for Apollo 17 compared with composition of all lunar soils.

trace-element-enriched material (KREEP?) was especially enriched in the finest fraction (figure 10).

Laul et al. (1984) found that Zn was anticorrelated with agglutinate content. Zn was highest in the fine fraction indicating that it was surface correlated (figure 11).

Cosmogenic isotopes and exposure ages


The irradiation history and depositional history of this deep drill core is complicated. The material in the core with the least, and most ancient, surface exposure is near the surface (25 to 60 cm deep), and the soil with the greatest, and most recent, surface exposure is at a depth of 110 - 170 cm. The top 25 cm is like other soils at Apollo 17 (Thiemens and Clayton 1980). However, a region around 240 cm has correlated high ¹⁵N, ²¹Ne, ³⁸Ar and KREEP content. It needs to be studied in more detail.

Curtis and Wasserburg (1975) studied the neutron fluence of the core using Gd isotopes, consistent with a model where the core was laid down at a single, recent time (\sim 100 m.y.). However, in a later paper they reported a single particle that has Gd isotopes inconsistent with that model (figure 17).

Rancitelli et al. (1975) and Fruchter et al. (1976 - 9) reported ²²Na and ²⁶Al for the entire Apollo 17 deep drill core. Nishiizumi et al. (1976) reported the activity of ⁵³Mn for samples of 70008 and Fruchter et al. (1979) determined the whole core (figures 12 and 13).

Other Studies

Rare gas contents were reported by Pepin et al. (1975) who found an enrichment of ²¹Ne and ³⁸Ar at depth

Figure 6: Normalized rare-earth-element pattern for Apollo 17 deep drill core compared with nearby reference soil (70180).

(figure 14). Elevated ¹⁵N was reported by Thiemens and Clayton (1980) for about the same region. This indicates a long exposure to the Sun at an ancient time.

Crozaz et al. (1974), Crozaz and Plachy (1976), Crozaz and Dust (1977), Crozaz and Ross (1979), Goswami and Lal (1977 and 1979) studied nuclear tracks in silicates as a function of depth (figures 15 and 16). This data indicate a complicated exposure of particles along the core and is consistent with a long, multi-event deposition of the core.

Processing

Although the core was allowed to sit in the sunlight (see figure 1 in 70180), and was warmed up for 7-10 days during transit to earth, portions were removed and placed in a freezer, where they have remained all these years (see section on 70001).

Continuous sets of thin sections and long epoxy encapsulated reference cores are available for the entire drill string (eight segments).

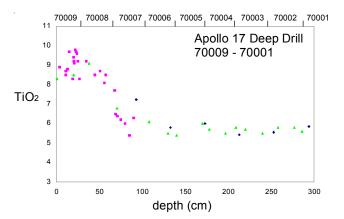


Figure 7: Bulk chemical composition of Apollo 17 deep drill as function of depth (with segments indicated at top). Data from Ehmann and Ali, Laul et al. and Helmke et al. - see tables.

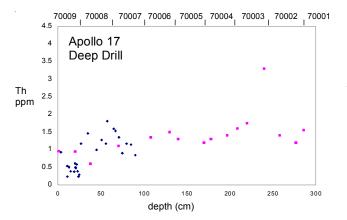


Figure 8: Bulk chemical composition of Apollo 17 deep drill as function of depth (with segments indicated at top). Data from Ehmann and Ali, Laul et al. and Helmke et al. - see tables.

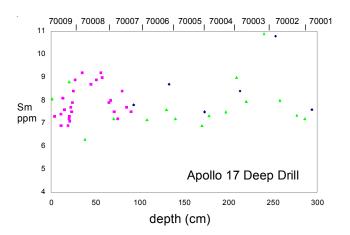


Figure 9: Bulk chemical composition of Apollo 17 deep drill as function of depth (with segments indicated at top). Data from Ehmann and Ali, Laul et al. and Helmke et al. - see tables.

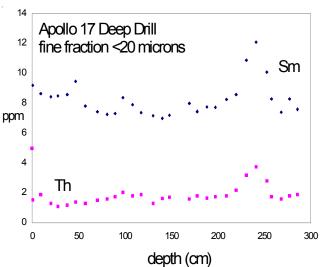


Figure 10: Laul et al. 1979, 1980 found that trace elements were enriched in the finest fraction and that this effect was pronounced at ~240 cm depth in the Apollo 17 deep drill.

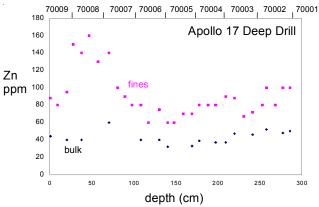
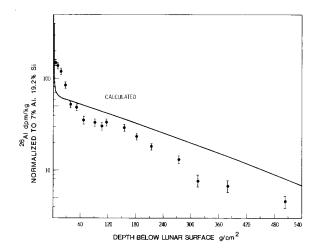



Figure 11: Laul et al. (1979, 1980) found that zinc (Zn) concentration is elevated in the top portion of the deep drill core, and anticorrelated with the agglutinate content. Notice that it is also enriched in the fines, indicating surface correlation.

Table 2.	. Chen	nical c	ompos	sition o	of A17	deep d	lrill (re	preser	ntative	sampl	es). *	
	70001	70002	70003	70004	70005	70006	70007	70008	70008	70009	70009	
reference weight SiO2 %	Laul + P 4 mg 42.3	apike80 15 mg 42.3	42.6	Laul et 42.2	al. 1979 42.1	42.1	>90 41.7	Laul et 5.89 39.5	al. 1978 >90 39.9	3.65 40.7	top 40.4	(a)
TiO2 Al2O3	5.6 13.5	5.8 14	5.7 14.5	5.7 13.7	5.4 14.4	6.1 13	6 13.9	9.1 11.1	9.8 10	8.5 11.5	8.3 12.1	(a) (a)
FeO MnO MgO	16 0.194 10.5	15.4 0.19 10.1	15.3 0.184 10	16.7 0.192 10.2	16 0.194 9.9	16.3 0.2 10.1	15.9 0.206 10.1	18.3 0.23 9.6	18.3 0.24 9	17.5 0.224 10	17.1 0.224 10.7	(a) (a) (a)
CaO Na2O	11.1 0.45	11.2 0.46	11 0.44	10.5 0.41	11.8 0.41	10.5 0.43	11.3 0.39	11.2 0.43	10.9 0.4	10 10 0.41	10.8 0.39	(a) (a) (a)
K2O P2O5	0.12	0.12	0.14	0.11	0.11	0.11	0.087	0.068	0.078	0.085	0.085	(a)
S % sum depth (cm)		here are r 258	nany mor 220	re analys 178	es in thes 140	e publica 108	81	can be p 38	28	nere! 20	1	
Sc ppm V Cr	47.5 80	47 80	43.5 80	51 85	48.9 90	50 90	49.3 85 3010	63.6 100 3147	72.1 100 2737	20 60 100 2874	56.6 100 2805	(a) (a)
Co Ni Cu	31.3 160	36 210	40 260	44 250	36.6 250	36.9 220	31.8 150	28.4 110	22.3 60	34.9 100	32.3 150	(a) (a)
Zn Ga Ge ppb	50 7.4	52 9	47 8	39 7	32 6.6	40 6.6	40 5.5	40 9	30 5.2	40	44 6.3	(a) (a)
As Se Rb												
Sr Y Zr Nb Mo Ru	170	170	170	150	170	190	170	150	160	180	210	(a)
Rh Pd ppb Ag ppb Cd ppb n ppb Sn ppb Sb ppb Fe ppb Cs ppm												
Ba ∟a Ce	130 9.5 29	140 10 30	170 12 33	120 9.5 28	120 9.23 27	120 9.36 28	100 6.65 23	80 5.4 20	100 6.54 25	110 8.3 29	120 7.9 28	(a) (a) (a)
Pr Nd Sm Eu	22 7.2 1.6	23 8 1.7	25 7.95 1.55	22 7.33 1.5	22 7.2 1.55	23 7.15 1.7	18 6.3 1.55	19 6.3 1.7	24 8.5 1.75	25 8.8 1.9	23 8.06 1.76	(a) (a) (a)
Gd Fb Dy Ho	1.8 10 2.5	1.9 10.9 2.5	1.9 10.5 2.6	1.9 11 2.6	1.8 10.5 2.6	1.9 10 2.4	1.6 9.6 2.4	1.8 10 2.5	2.2 12.6 2.6	2.1 12.5 2.8	1.9 11.4 2.9	(a) (a) (a)
Er Tm Yb	6.1	1 6.7	1 6.4	1 6.25	0.96 6.21	6.1	6	6.64	8.21	7.4	7.11	(a) (a)
₋u Hf Га № ppb Re ppb	0.9 5.7 1	0.97 6.4 1	0.91 6.27 1.1	0.92 6 1.14	0.88 6.05 1.02	0.9 6 1.05	0.84 5.45 1.2	0.95 5.56 1.3	1.16 6.5 1.44	1.1 6.6 1.35	1.07 6.6 1.2	(a) (a) (a)
Os ppb Ir ppb Pt ppb	<10	15	13	16	<10	<15		<10	<10	<10	<10	(a)
Au ppb Au ppb Th ppm U ppm technique:	3 1.5 0.5	4.4 1.4 0.5	3.5 1.75 0.45	2.8 1.3 0.4	5.2 1.3 0.4	3 1.35 0.4	0.95	2 0.6	0.4	2 0.94	3 0.95 0.23	(a) (a) (a)

Table 3: Jovanovic and Reed (1974)

		F ppm	CI ppm		Br ppm		l ppm	Li ppm	U ppm
	depth cm		res.	leach	res.	leach			
70181	surface	52	14	19	840	43	1.2	7.2	0.22
70006	94		13	5	190	60	3	9.4	0.29
70005	135		14	3.8	130	60	3	7.2	0.24
70002	256		21	7.9	190	90	9	9.8	0.51

Figure 12: Depth profile for 26Al for A17 deep drill (measured and predicted)(from Fruchter et al. 1979).

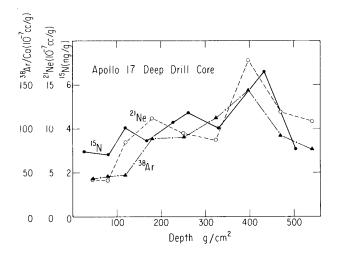


Figure 14: 15N, 21Ne and 38Ar are all enriched in Apollo 17 deep drill string (Pepin et al. 1975; Thiemens and Clayton 1980). The peak at 400 g/ cm2 at the top of segment 70003 indicates an intense solar irradiation at an ancinct time.

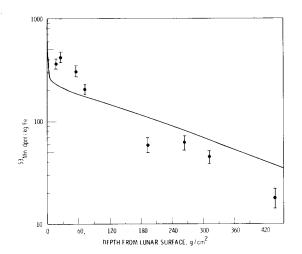


Figure 13: Depth profile for 53Mn for A17 deep drill (measured and predicted)(from Fruchter et al. 1979).

Table 4	. Chem	ical com	position	1 OT A17	aeep ar	11.					
	70001	70002	70003	70004	70005	70006		70008	70008	70008	70008
reference depth SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	Helmke 7: 294 42.1 5.85 14.1 14.5 0.2 10.3 11.2 0.43 0.12	3 253 43.4 5.56 14 14.5 0.199 9.94 10.9 0.48 0.227	213 42.9 5.44 13.9 14.5 0.203 10.3 11 0.46 0.149	173 42.6 6 13.7 14.9 0.209 10.1 11.2 0.44 0.114	133 42.6 5.8 14.1 14.7 0.207 9.97 11.2 0.42 0.118	93 41.6 7.23 13.3 15.2 0.213 9.56 10.9 0.46 0.101	 (a) (a) (a) (a) (a) (a) (a) (a) 	Fruchter 30 0.116	0.088	50 0.113	60 0.088
Sc ppm V	47	43	43	46	46	52	(b)				
Cr Co Ni Cu Zn Ga Ge ppb As Se Rb Sr Y Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sb ppb Te ppb Cs ppm	2900 34	2770 36	2900 39	2800 34	2790 37	2930 30	(b) (b)				
Ba La Ce Pr Nd	9.2 25	16.1 54	10.9 35	9.3 28	11.9 36	8.3 29	(b) (b)				
Sm Eu Gd Tb Dy Ho Er Tm	7.6 2.1	10.8 2.4	8.4 2.1	7.5 2	8.7 2.1	7.8 2.2	(b) (b)				
Yb Lu Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb	6.4 0.88 6.2	8.5 1.2 8.6	6.6 0.93 6.6	6.2 0.86 6	7 0.96 6.5	6.6 0.93 6.3	(b) (b) (b)				
Th ppm U ppm	(a) AA, (b,) INAA						0.84 0.19	1.16 0.27	0.75 0.21	0.97

Table 4. Chemical composition of A17 deep drill.

Lunar Sample Compendium C Meyer 2007

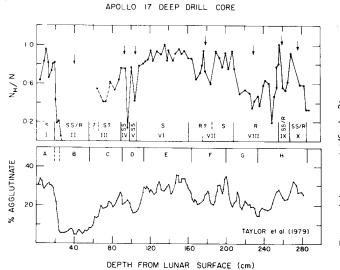


Figure 15: Track densities in feldspar and pyroxene grains in 80 samples along the length of the Apollo 17 deep drill (Goswami and Lal 1979). S stands for slow and R for rapid accretion, SS is for a soil slab deposit. Arrows indicated where material has been added in quick succession (nearby cratering event). Taylor et als measure of agglutinate content and litholgoical subdivision is given for comparison.

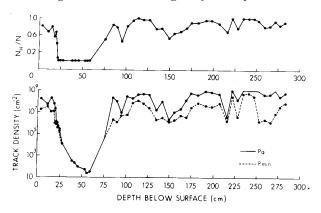


Figure !6: Track densities in feldspar grains from 49 individual layers in the Apollo 17 deep drill (Crozaz and Ross 1979).

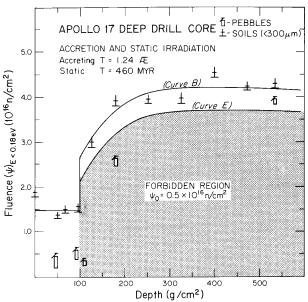


Figure 17: Gd isotopes of an individual particle violate the neutron flux model of Curtis and Wasserburg (1977b).

References:

Allton J.H. and Waltz S.R. (1980) Depth scales for Apollo 15, 16 and 17 drill cores. Proc. 11th Lunar Planet. Sci. Conf. 1463-1477.

Apollo 17 PET (1973) The Apollo 17 lunar samples – Petrographic and chemical description. Science 182, 659-672.

Arvidson R., Drozd R., Guinness E., Hohenberg C., Morgan C., Morrison R. and Oberbeck V. (1976) Cosmic ray exposure ages of Apollo 17 samples and the age of Tycho. Proc. 7th Lunar Sci. Conf. 2819-2832.

Blanchard D.P., Korotev R.L., Brannon J.C., Jacobs J.W., Haskin L.A., Reid A.M., Donaldson C. and Brown R.W. (1975) A geochemical and petrographic study of 1-2 mm fines from Apollo 17. Proc. 6th Lunar Sci. Conf. 2321-2342.

Crozaz G., Drozd R., Hohenberg C.M., Morgan C., Ralston C., Walker R.M. and Yuhas D. (1974) Lunar surface dynamics: Some general conclusions and new results from Apollo 16 and 17. Proc. 5th Lunar Sci. Conf. 2475-2500.

Crozaz G. and Plachy A.L. (1976) Origin of the Apollo 17 deep drill coarse-grained layer. Proc. 7th Lunar Planet. Sci. Conf. 123-131.

Crozaz G. and Dust S. (1977) Irradiation history of lunar cores and the development of the regolith. Proc. 8th Lunar Sci. Conf. 3001-3016.

Crozaz G. (1978) Regolith irradiation stratigraphy at the Apollo 16 and 17 landing sites. Proc. 9th Lunar Planet. Sci. Conf. 1787-1800.

Crozaz G. and Ross L.M. (1979) Deposition and irradiation of the Apollo 17 deep drill core. Proc. 10th Lunar Planet. Sci. Conf. 1229-1241.

Curtis D.B. and Wasserburg G.J. (1975) Apollo 17 neutron stratigraphy – sedimentation and mixing in the lunar regolith. The Moon 13, 185-227.

Curtis D.B. and Wasserburg G.J. (1977a) Transport and erosional processes in the Taurus-Littrow Valley – Inferences from neutron fluences in lunar soils. Proc. 8th Lunar Sci. Conf. 3045-3057.

Curtis D.B. and Wasserburg G.J. (1977b) Stratigraphic processes in the lunar regolith – additional insights from neutron fluence measurements on bulk soils and lithic fragments from the deep drill cores. Proc. 8th Lunar Sci. Conf. 3575-3593.

Duke M.B. and Nagle J.S. (1974, 1976) Lunar Core Catalog. JSC09252. *and various supplements*

Dragon J.C., Johnson N.L., Pepin R.O., Bates A., Coscio M.R., and Murthy V.R. (1975) The Apollo 17 deep drill core: A possible depositional model. (abs) LS VI, 196-198.

Drozd R.J., Hohenberg C.M., Morgan C.J., Podosek F.A. and Wroge M.L. (1977) Cosmic-ray exposure history at Taurus-Littrow. Proc. 8th Lunar Sci. Conf. 3027-3043.

Ehmann W.D and Ali H.Z. (1977) Chemical stratigraphy of the Apollo 17 deep drill cores 70009-70007. Proc. 8th Lunar Sci. Conf. 3223-3241.

Fruchter J.S., Rancitelli L.A. and Perkins R.W. (1975) Primordial radionuclide variation in the Apollo 15 and 17 deep core samples and in Apollo 17 igneous rocks and breccias. Proc. 6th Lunar Planet. Sci. Conf. 1399-1405.

Fruchter J.S., Rancitelli L.A. and Perkins R.W. (1976) Recent and long-term mixing of the lunar regolith based on 22Na and 26Al measurements in Apollo 15, 16 and 17 deep drill stems and drive tubes. Proc. 7th Lunar Planet. Sci. Conf. 27-39.

Fruchter J.S., Rancitelli L.A. and Perkins R.W. (1979) History of the Apollo 17 deep drill string during the past few million years. (abs) LPS X, 408-410.

Fruchter J.S., Reeves J.H., Evans J.C. and Perkins R.W. (1981) Studies of lunar regolith dynamics using measurements of cosmogenic radionuclides in lunar rocks, soils and cores. Proc. 12th Lunar Planet. Sci. Conf. 567-575.

Goswami J.N. and Lal D. (1974) Cosmic ray irradiation at the Apollo 17 site: Implications to Lunar regolith dynamics. Proc. 5th Lunar Sci. Conf. 2643-2662.

Goswami J.N. and Lal D. (1979) Depositional history of the Apollo 17 deep drill core based on particle track record. Proc. 10th Lunar Planet. Sci. Conf. 1253-1267.

Helmke P.A., Blanchard D.P., Jacobs J.W., Trelander K.M. and Haskin L.A. (1973) Major and trace element materials from the Apollo 17 deep drill core. Trans. Am. Geophys. Union 54, 595.

Heiken G. and McKay D.S. (1974) Petrography of Apollo 17 soil. Proc. 5th Lunar Sci. Conf. 843-860.

Hintenberger H., Schultz L. and Weber H.W. (1975) A comparison of noble gases in lunar fines and soil breccias: Implications for the origin of soil breccias. Proc. 6th Lunar Sci. Conf. 2261-2270.

Housley R.M., Cirlin E.H., Goldberg I.B. and Crow H. (1976) Ferromagnetic resonance studies of lunar core stratigraphy. Proc. 7th Lunar Sci. Conf. 13-26.

Jovanovic S. and Reed G.W. (1973) Volatile trace elements and the characterization of the Cayley Formation and the primitive lunar crust. Proc. 4th Lunar Sci. Conf. 1313-1324.

Jovanovic S. and Reed G.W. (1974) Labile and non-labile element relationships among Apollo 17 samples. Proc. 5th Lunar Planet. Sci. Conf. 1685-1702.

Korotev R.L. (1976a) Rare earths and other elements in two size fractions of soils from the Taurus-Littrow valley floor. (abs) LS VII, 457-459.

Korotev R.L. (1976b) Geochemistry of grain-size fractions of soils from the Taurus-Littrow valley floor. Proc. 7th Lunar Sci. Conf. 695-726.

Labotka T.C., Vaniman D.T. and Papike J.J. (1979) The Apollo 17 drill core: Comparative modal petrology and phase chemistry of the >20 micron and <20 micron fractions. Geophys. Rev. Lett. 6, 503-506.

Langevin Y. and Maurette M. (1978) Plausible depositional histories for the Apollo 15, 16 and 17 drill core tubes. Proc. 9th Lunar Planet. Sci. Conf. 1765-1786.

Langevin Y. and Nagle J.S. (1980) The depositional history of the Apollo deep drill core: A reappraisal. Proc. 11th Lunar Planet Sci. Conf. 1415-1434.

Laul J.C., Hill D.W. and Schmitt R.A. (1974) Chemical studies of Apollo 16 and 17 samples. Proc. 5th Lunar Sci. Conf. 1047-1066.

Laul J.C. and Papike J.J. (1980a) The lunar regolith: Comparative chemistry of the Apollo sites. Proc. 11th Lunar Planet. Sci. Conf. 1307-1340.

Laul J.C. and Papike J.J. (1980b) The Apollo 17 drill core: Chemistry of size fractions and the nature of the fused soil component. Proc. 11th Lunar Planet. Sci. Conf. 1395-1413.

Laul J.C., Vaniman D.T., Papike J.J. and Simon S.B. (1978) Chemistry and petrology of size fractions of the Apollo 17 deep drill core 70009-70006. Proc. 9th Lunar Planet. Sci. Conf. 2065-2097.

Laul J.C., Lepel E.A., Vaniman D.T. and Papike J.J. (1979) The Apollo 17 drill core: Chemical systematics of the grain size fractions. Proc. 10th Lunar Planet. Sci. Conf. 1269-1298.

Laul J.C., Smith M.R., Papike J.J. and Simon S.B. (1984) Agglutinates as recorders of regolith evolution: Application to the Apollo 17 drill core. Proc. 15th Lunar Planet. Sci. Conf. C161-C170.

LSPET (1973) Preliminary examination of lunar samples. Apollo 17 Preliminary Sci. Report NASA SP-330. 7-1.

McKay D.S., Heiken G., Basu A., Blanford G., Simon S., Reedy R., French B.M. and Papike J.J. (1992) The Lunar regolith. *In* Lunar Source Book: a users guide to the moon. 285-356.

Morris R.V., Lauer H.V. and Gose W.A. (1979a) Depositional and exposure history of the Apollo 17 deep drill core. (abs) LPS X, 864-866.

Morris R.V., Lauer H.V. and Gose W.A. (1979b) Characterization and depositional and evolutionary history of the Apollo 17 deep drill core. Proc. 10th Lunar Planet. Sci. Conf. 1141-1157.

Morris R.V. (1978) In situ reworking (gardening) of the lunar surface: Evidence from the Apollo cores. Proc. 9th Lunar Planet. Sci. Conf. 1801-1811.

Nagle J.S. and Waltz S.R. (1979) Sedimentary petrology of the Apollo 17 deep drill string. (abs) LPS X, 895-897.

Nishiizumi K., Imamura M., Honda M., Russ C.P., Kohl C.P. and Arnold J.R. (1976) 53Mn in the Apollo 15 and 16 drill stems: Evidence for surface missing. Proc. 7th Lunar Sci. Conf. 41-54.

Papike J.J., Simon S.B. and Laul J.C. (1982) The lunar regolith: Chemistry, mineralogy and petrology. Rev. Geophys. Space Phys. 20, 761-826.

Pepin R.O., Dragon J.C., Johnson N.L., Bates A., Coscio M.R. and Murthy V.R. (1975) Rare gases and Ca, Sr and Ba in Apollo 17 drill-core fines. Proc. 6th Lunar Sci. Conf. 2027-2056.

Philpotts J.A., Schumann S., Kouns C.W., Lum-Staab R.K.L. and Winzer S.R. (1974) Origin of Apollo 17 rocks and soils. Proc. 5th Lunar Sci. Conf. 1255-1268.

Rancitelli L.A., Fruchter J.S., Felix W.D., Perkins R.W. and Wogman N.A. (1975) Cosmogenic isotopic production in Apollo deep-core samples. Proc. 6th Lunar Sci. Conf. 1891-1899.

Rhodes J.M., Rodgers K.V., Shih C.-Y., Bansal B.M., Nyquist L.E., Wiesmann H. and Hubbard N.J. (1974) The relationships between geology and soil chemistry at the Apollo 17 landing site. Proc. 5th Lunar Sci. Conf. 1097-1118.

Simon S.B., Papike J.J. and Laul J.C. (1981) The lunar regolith: Comparative studies of the Apollo and Luna sites. Proc. 12th Lunar Planet. Sci. Conf. 371-388.

Stoenner R.W., Davis R., Norton E. and Bauer M. (1974) Radioactive rare gases, tritium, hydrogen and helium in the sample return container and in the Apollo 16 and 17 drill stems. Proc. 5th Lunar Sci. Conf. 2211-2230.

Taylor G.J., Keil K. and Warner R.D. (1977) Petrology of Apollo 17 deep drill core. I: Depositional history based on modal analysis of 70007, 70008 and 70009. Proc. 8th Lunar Sci. Conf. 3195-3222.

Taylor G.J., Wentworth S., Warner R.D. and Keil K. (1978) Agglutinates as recorders of fossil soil compositions. Proc. 9th Lunar Planet. Sci. Conf. 1959-1968.

Taylor G.J., Warner R.D. and Keil K. (1979) Stratigraphy and depositional history of the Apollo 17 drill core. Proc. 10th Lunar Planet. Sci. Conf. 1159-1184.

Thiemens M.H. and Clayton R.N. (1980) Solar and cosmogenic nitrogen in the Apollo 17 deep drill core. Proc. 11th Lunar Planet. Sci. Conf. 1435-1451.

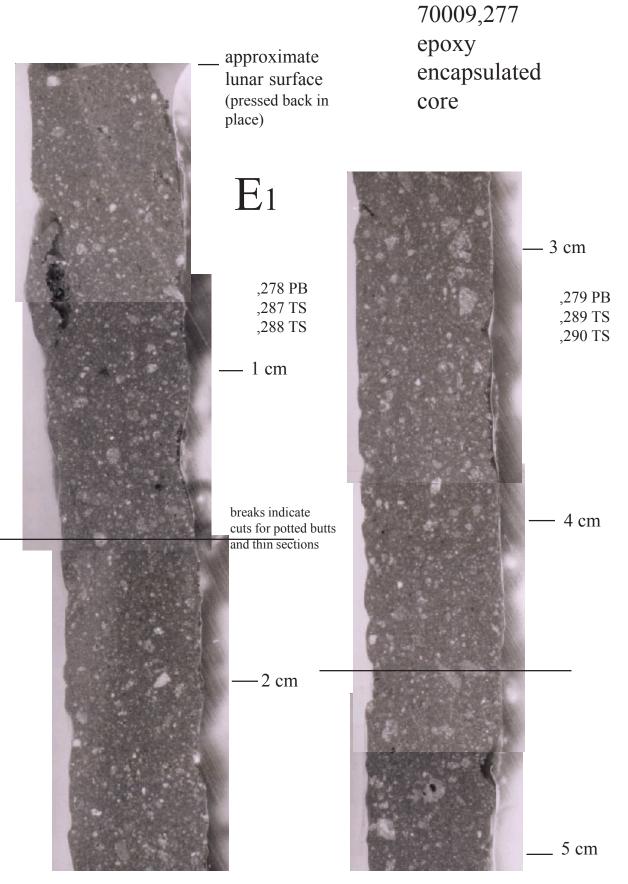
Vaniman D.T. and Papike J.J. (1977a) The Apollo 17 drill core: Characterization of the mineral and lithic component (70007, 70008, 70009). Proc. 8th Lunar Sci. Conf. 3123-3159.

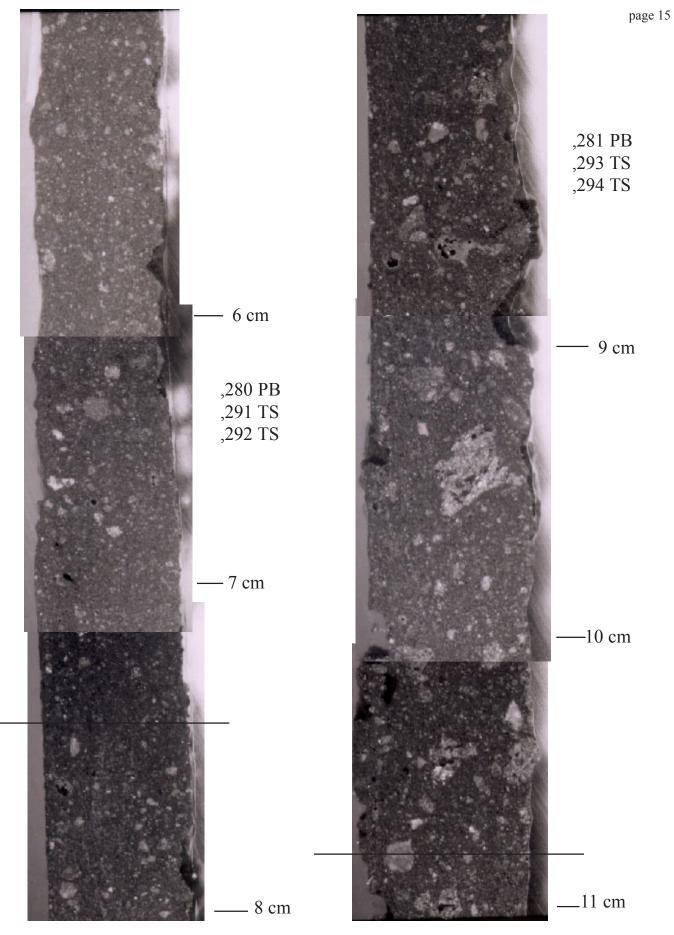
Vaniman D.T. and Papike J.J. (1977b) The Apollo 17 drill core: Modal petrology and glass chemistry (70007, 70008, 70009). Proc. 8th Lunar Sci. Conf. 3161-3193.

Vaniman D.T. and Papike J.J. (1977c) Very low Ti (VLT) basalts: A new mare basalt from the Apollo 17 drill core. Proc. 8th Lunar Sci. Conf. 1443-1472.

Vaniman D.T., Labotka T.C., Papike J.J., Simon S.B. and Laul J.C. (1979) The Apollo 17 drill core: Petrologic systematics and the identification of a possible Tyco component. Proc. 10th Lunar Planet. Sci. Conf. 1185-1227.

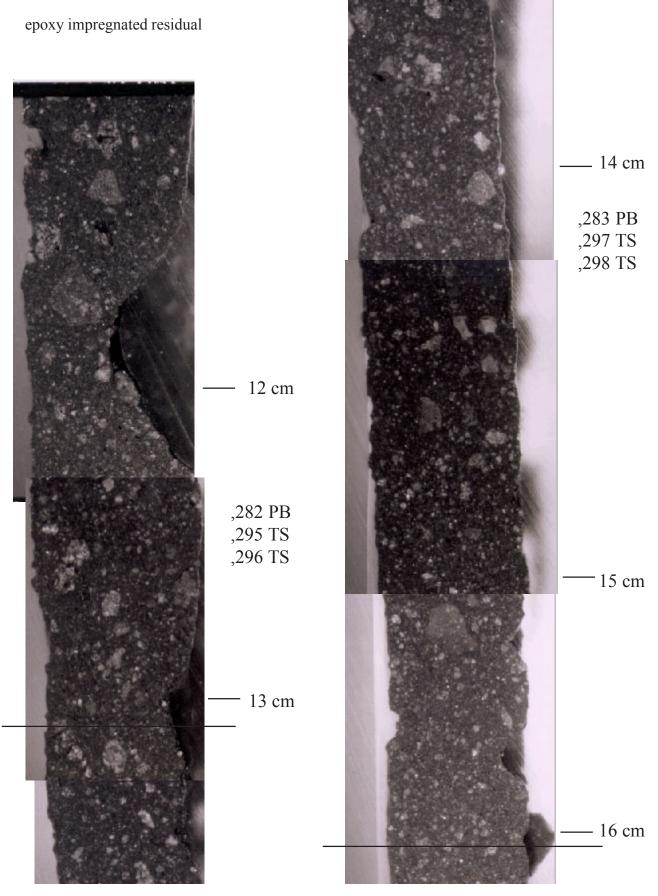
Warner R.D., Taylor G.J. and Keil K. (1979) Composition of glasses in Apollo 17 samples and their relation to known lunar rock types. Proc. 10th Lunar Planet. Sci. Conf. 1437-1456.

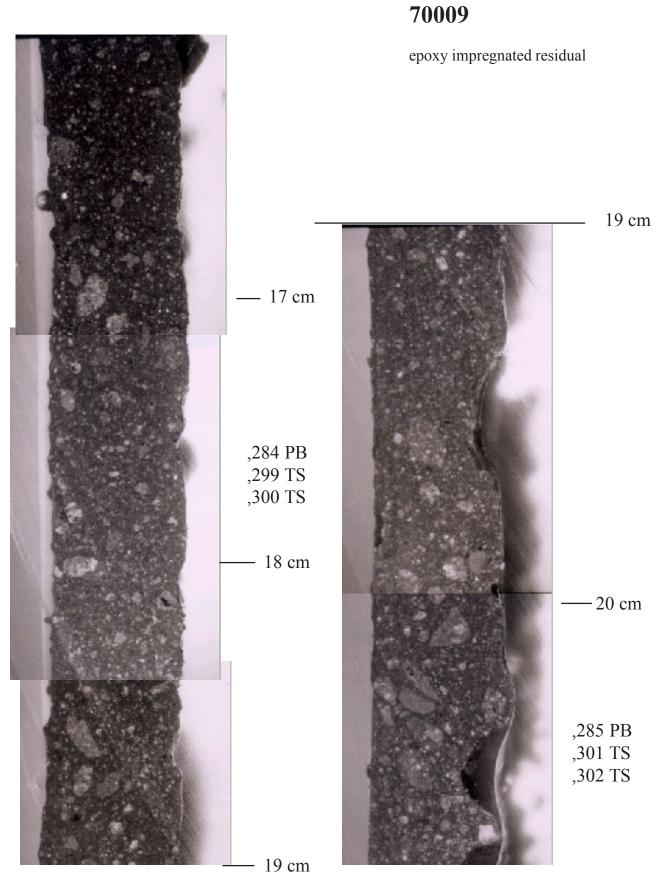

Wolfe E.W., Bailey N.G., Lucchitta B.K., Muehlberger W.R., Scott D.H., Sutton R.L. and Wilshire H.G. (1981) The geologic investigation of the Taurus-Littrow Valley: Apollo 17 landing site. USGS Prof. Paper 1080


Wolfe E.W., Lucchitta B.K., Reed V.S., Ulrich G.E. and Sanchez A.G. (1975) Geology of the Taurus-Littrow valley floor. Proc. 6th Lunar Sci. Conf. 2463-2482.

Yokoyama Y., Reyss J-L. and Guichard F. (1975) 22Na – 26Al studies of lunar regolith. Proc. 6th Lunar Sci. Conf. 1823-1843.

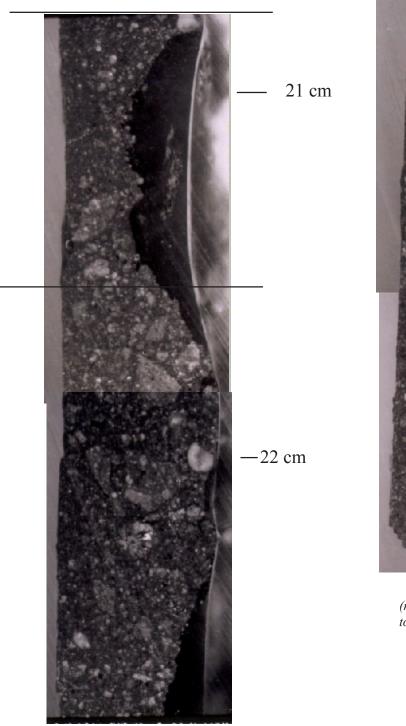
Core section	Depth below surface of top of core section (cm)		Core section weight (g)	Density (g/cm ³) ^b	Wt. of overburder at top of section (g/cm ²)
70009	0.0	25.1	143.3	1.75	0.0
70008	25.1	37.8	255.8°	2.07	43.84
70007	62.9	30.5	179.4	1.80	122.11
70006	93.4	38.8	234.2	1.85	176.99
70005	132.2	40.3 ^d	240.7	1.83	248.65
70004	172.5	39.2	238.8	1.86	322.29
70003	211.7	39.5	237.8	1.84	395.35
70002	251.2	34.5°	207.8	1.84	468.10
joint between					
70002-70001		0.6 ^f			
70001	286.3	5.5	29.8	1.66	531.68
Totals		291.8 ± 1.6	1767.6 ± 7.2	1.85 (average)	540.80 ± 2.2

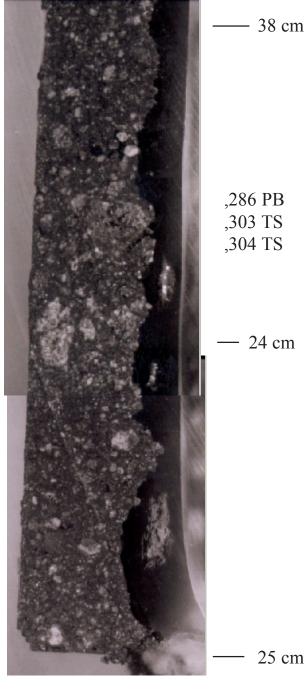

Table of calculated depth, densities and overburden mass of drill stem segments for Apollo 17 deep drill (Allton and Waltz 1980).



Lunar Sample Compendium C Meyer 2007

70009


page 16

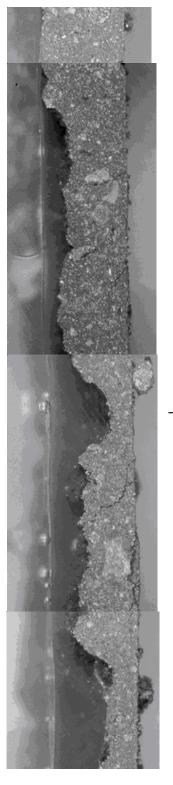


Lunar Sample Compendium C Meyer 2007

70009

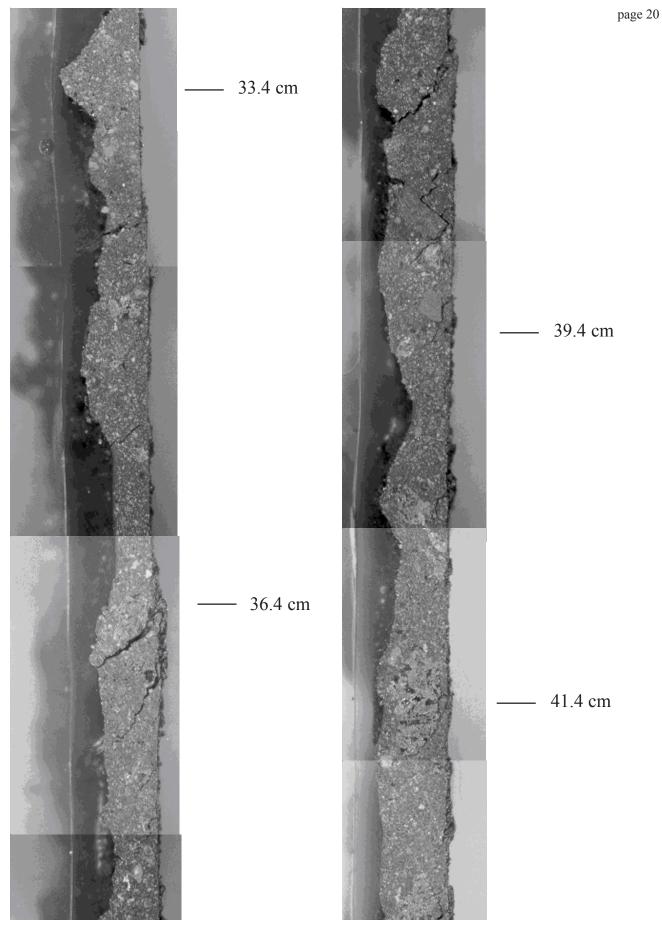
epoxy impregnated residual

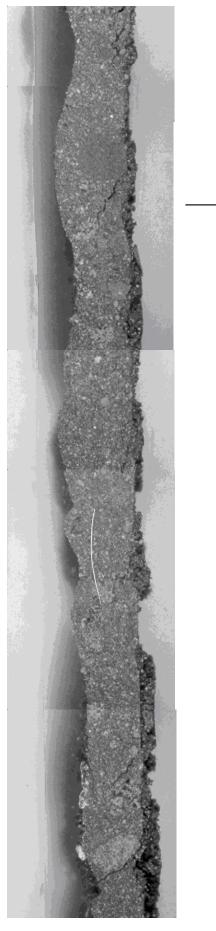
(note: presumably 5 mm was removed form the top of each segment)


Lunar Sample Compendium C Meyer 2007

70008,264 epoxy encapsulated core

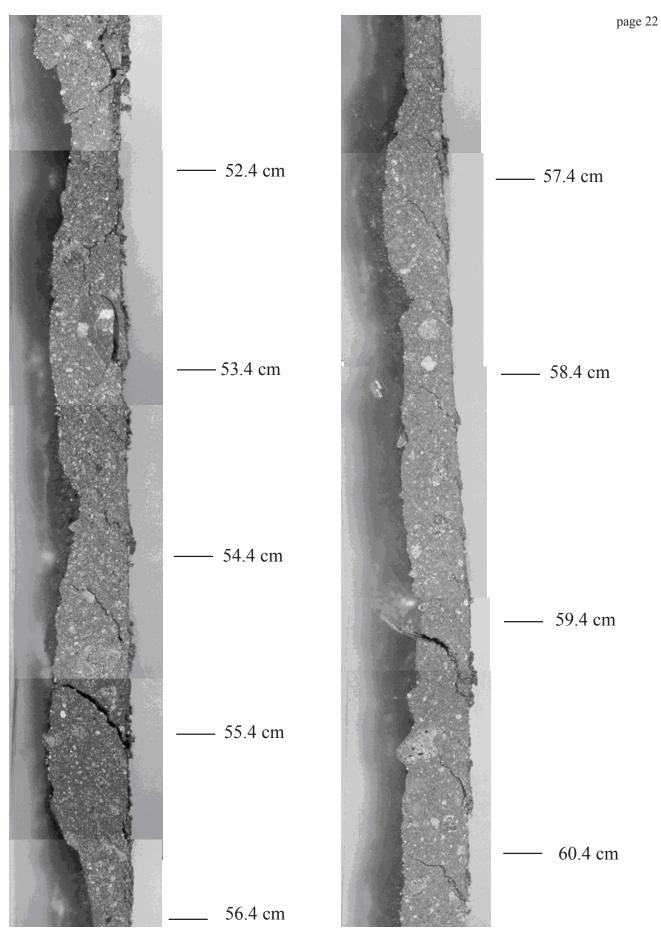
 W_1


25.1 cm (from Allton and Waltz)

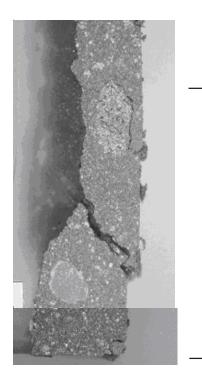


Lunar Sample Compendium C Meyer 2007

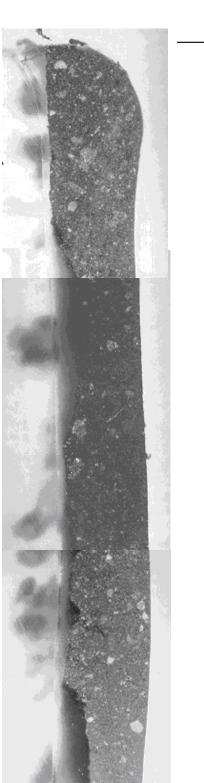
Lunar Sample Compendium C Meyer 2007



43.4 cm

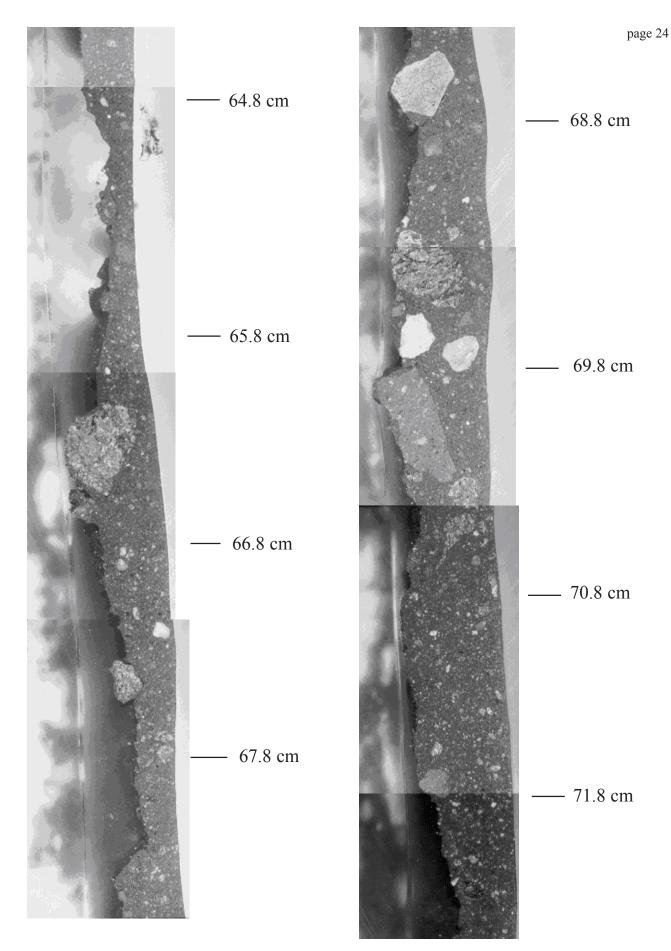

Lunar Sample Compendium C Meyer 2007

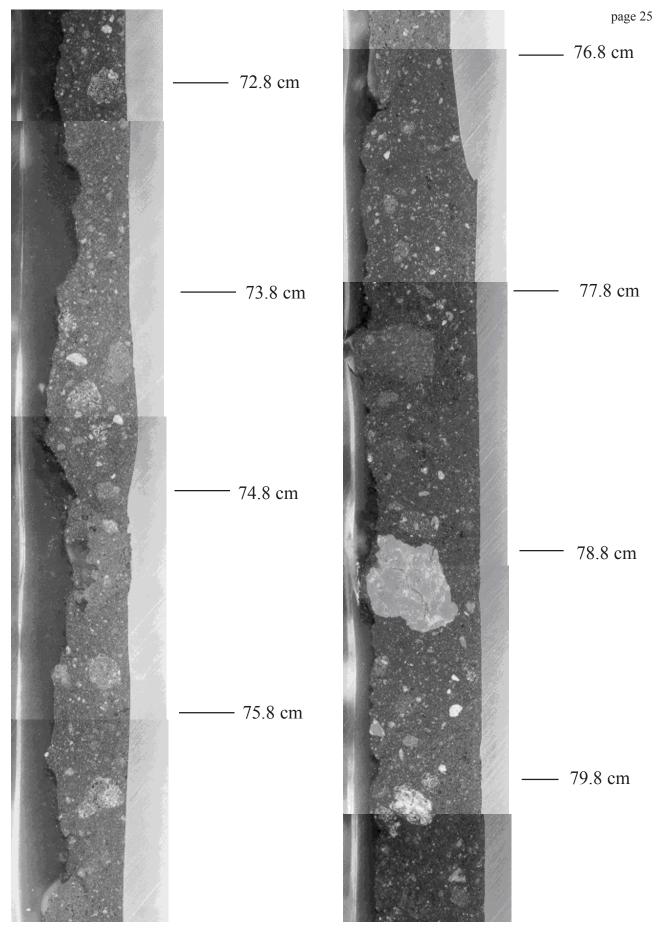
51.4 cm


Lunar Sample Compendium C Meyer 2007

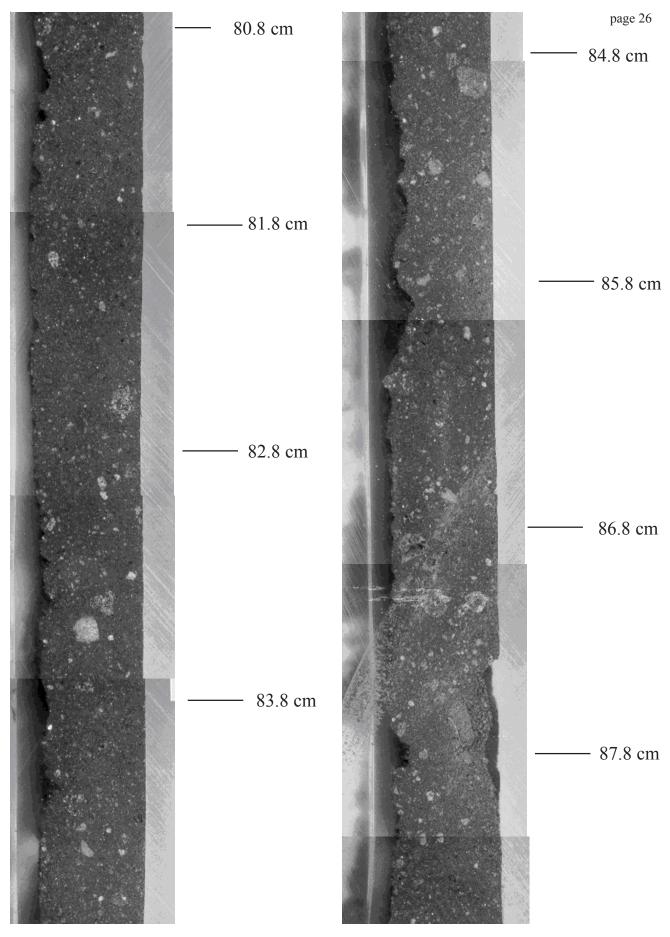
page 23

61.4 cm

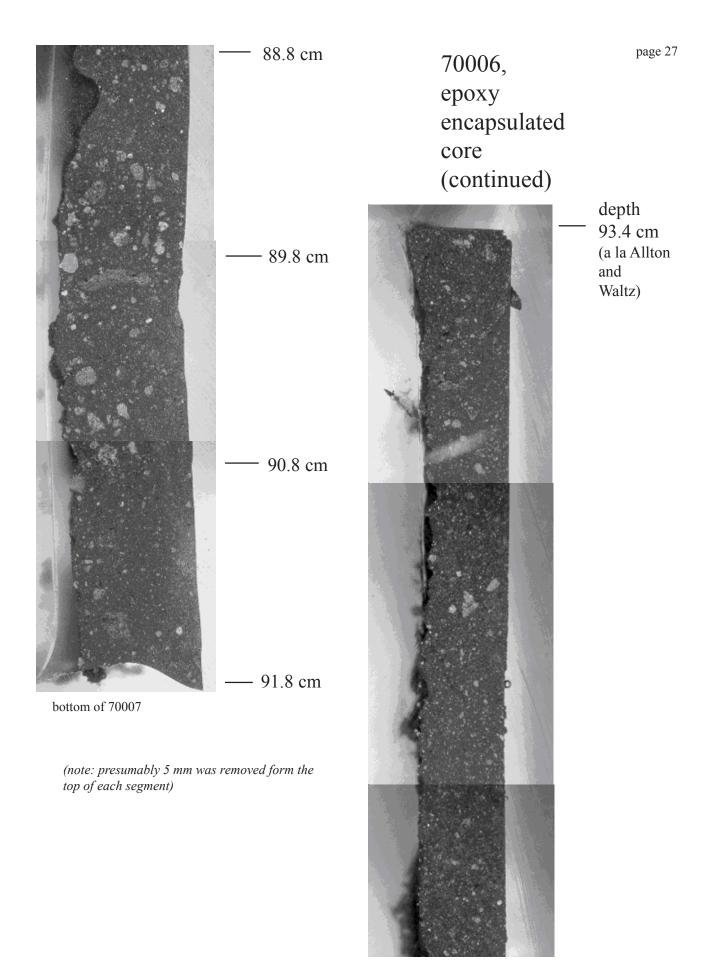

70007,157 epoxy encapsulated core

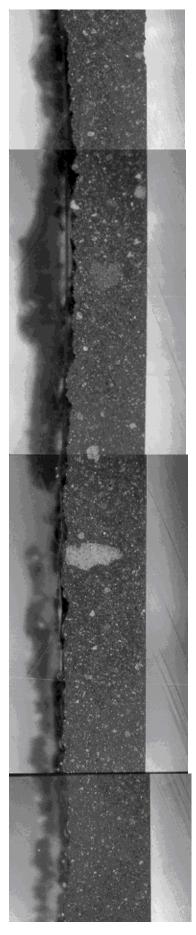


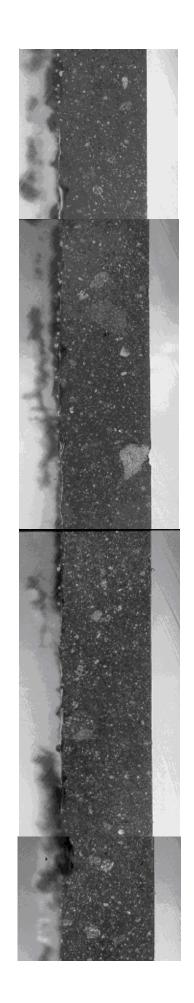
62.9 cm (a la Allton and Waltz)

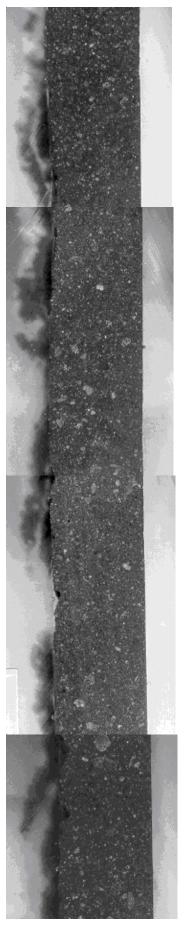

- 62.8 cm

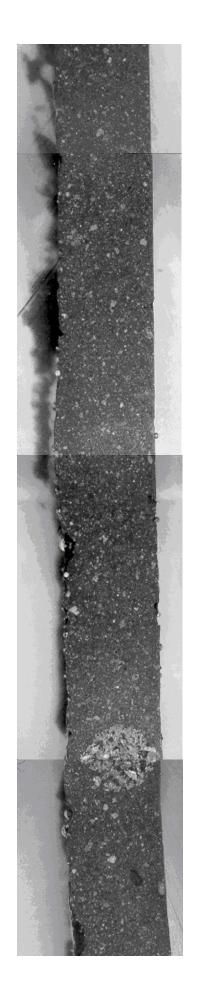
(note: presumably 5 mm was removed form the top of each segment)

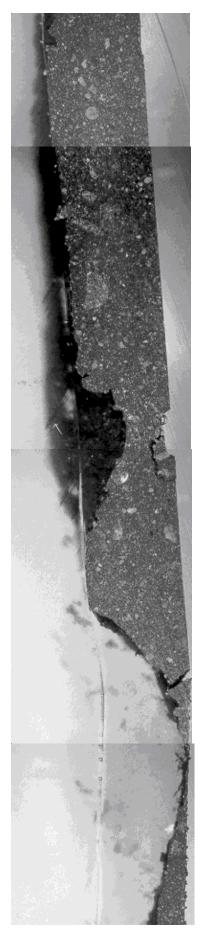


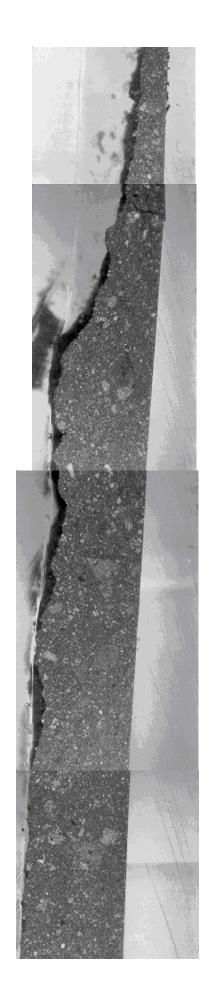


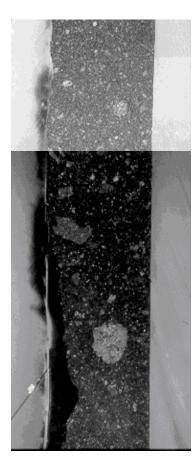

Lunar Sample Compendium C Meyer 2007

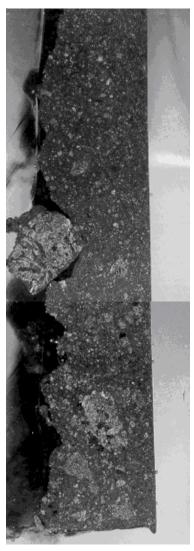

Lunar Sample Compendium C Meyer 2007

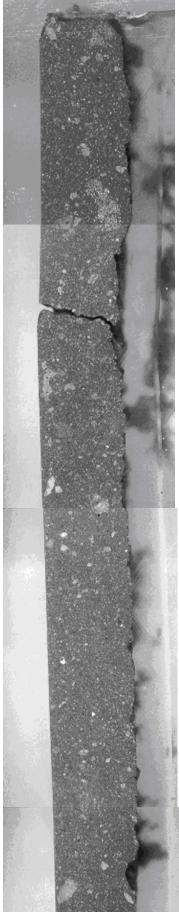


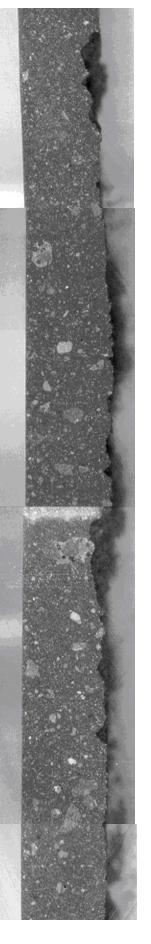



Lunar Sample Compendium C Meyer 2007

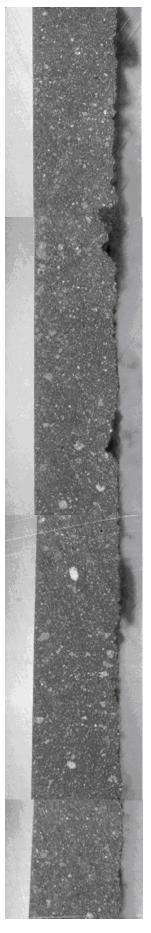


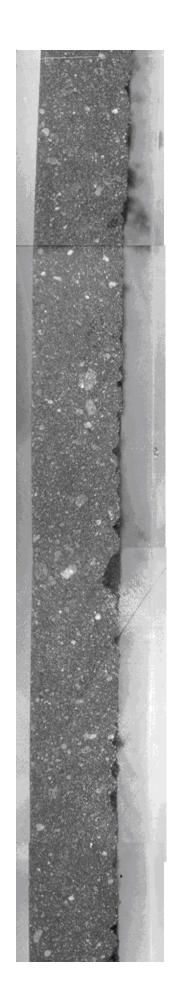

Lunar Sample Compendium C Meyer 2007


Lunar Sample Compendium C Meyer 2007

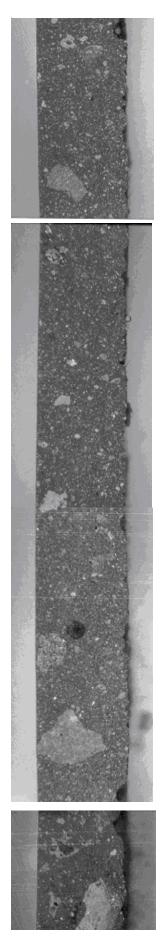

bottom of 70006,

(note: presumably 5 mm was removed form the top of each segment)

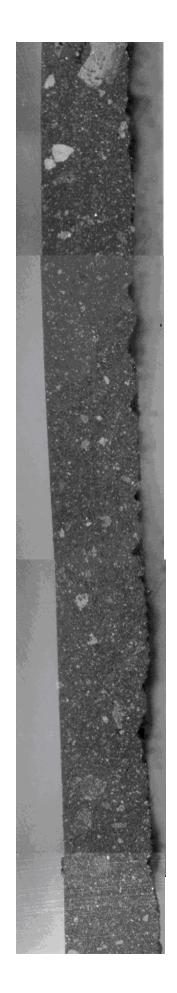


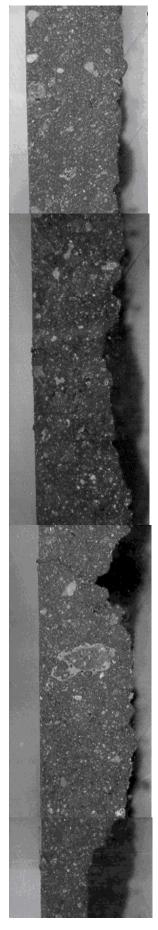

depth 132.2 cm (a la Allton and Waltz)

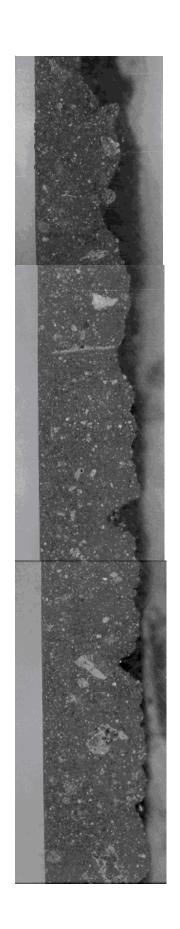
70005, epoxy encapsulated core (continued)



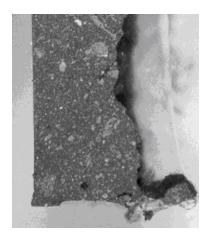
Lunar Sample Compendium C Meyer 2007

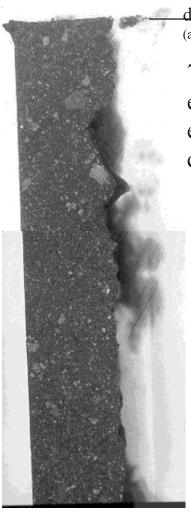


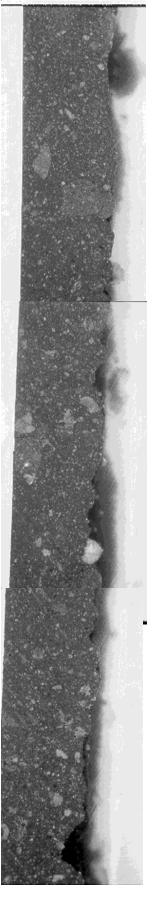



Lunar Sample Compendium C Meyer 2007

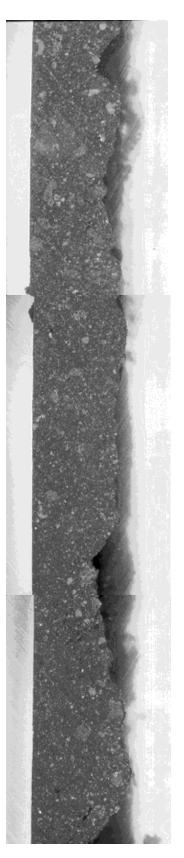
Lunar Sample Compendium C Meyer 2007

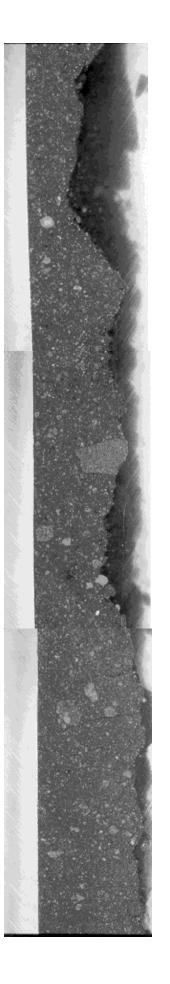



Lunar Sample Compendium C Meyer 2007

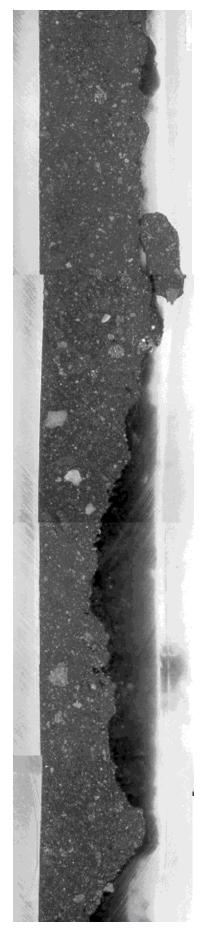

bottom of 70005

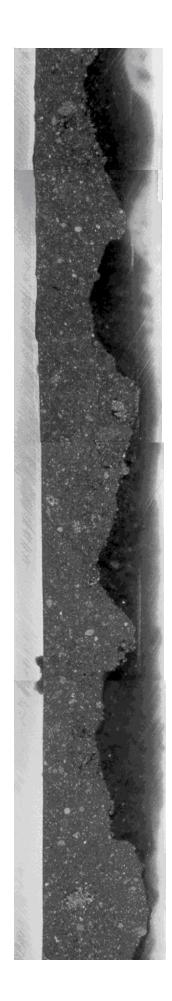
(note: presumably 5 mm was removed form the top of each segment)

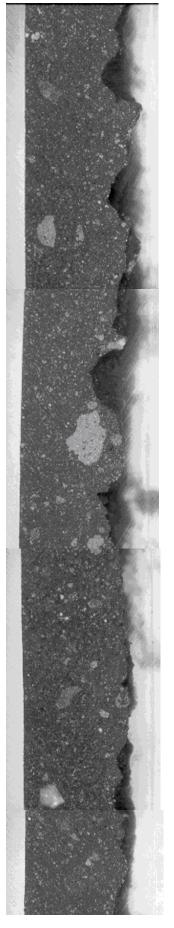


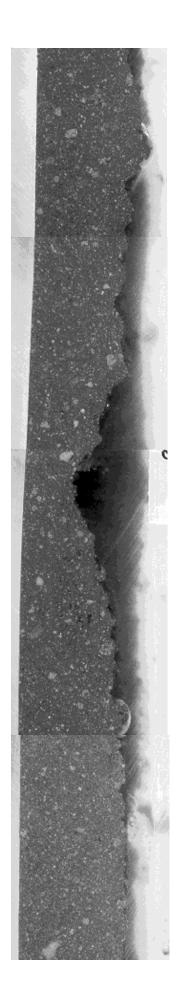

depth 172.5 cm (a la Allton and Waltz)

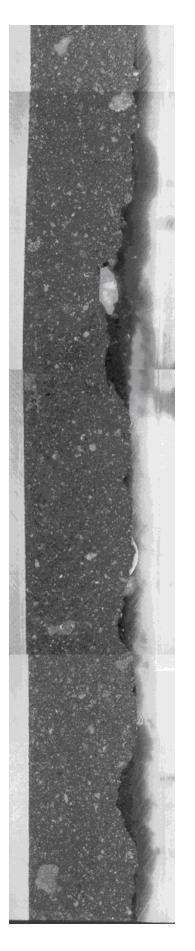
70004, epoxy encapsulated core



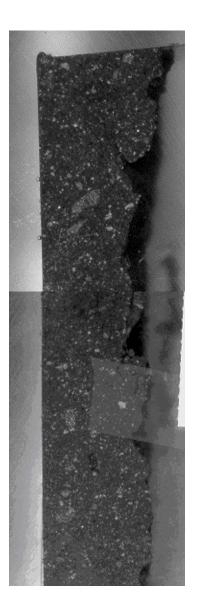

Lunar Sample Compendium C Meyer 2007




Lunar Sample Compendium C Meyer 2007

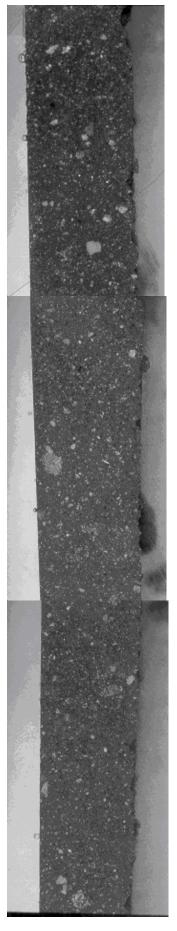


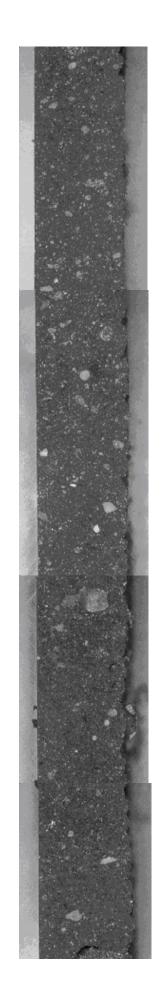
Lunar Sample Compendium C Meyer 2007



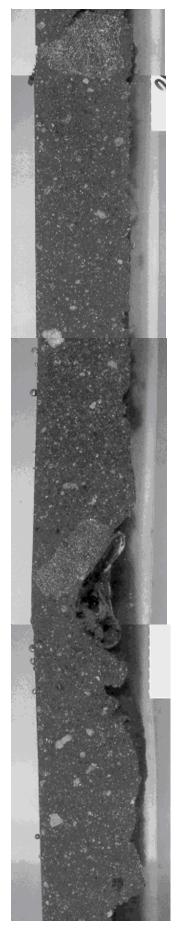
Lunar Sample Compendium C Meyer 2007

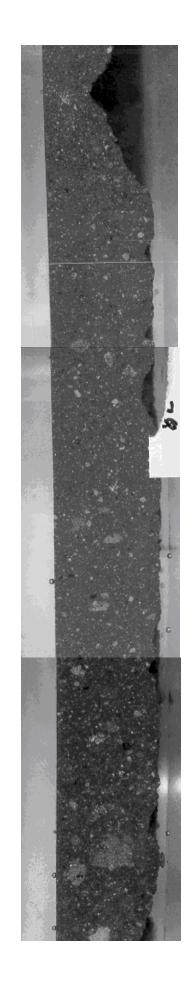
bottom of 70004

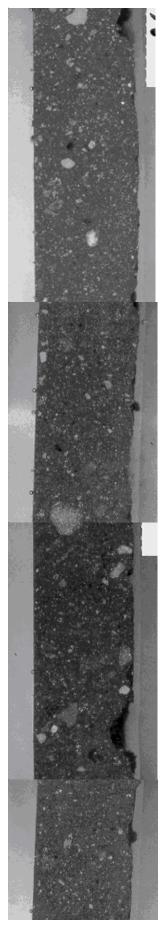

(note: presumably 5 mm was removed form the top of each segment)

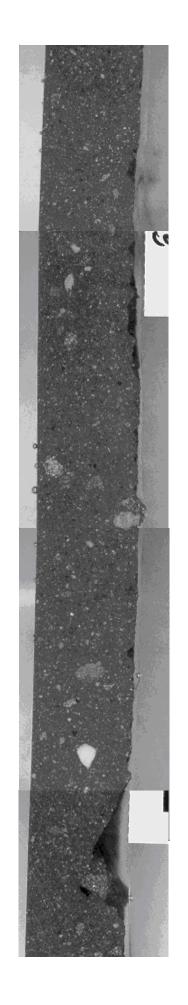


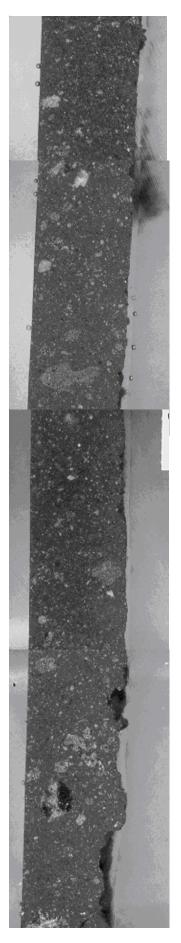
depth = 211.7 cm (a la Allton and Waltz)

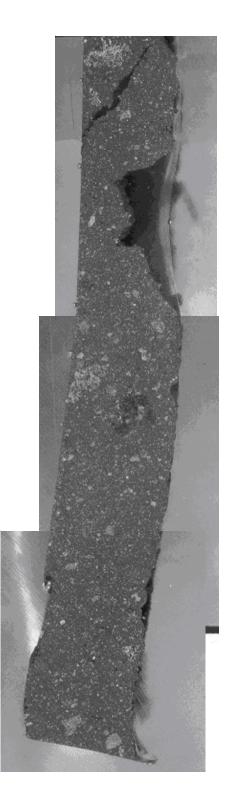

70003, epoxy encapsulated core

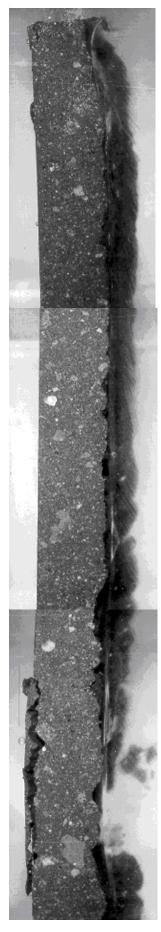

Lunar Sample Compendium C Meyer 2007

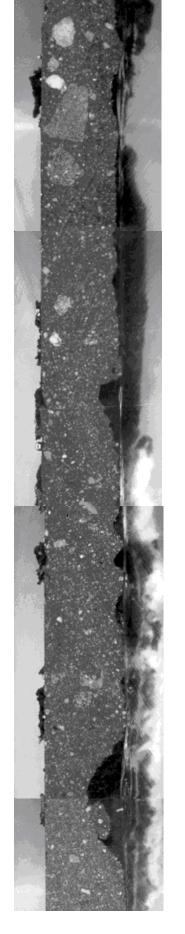



Lunar Sample Compendium C Meyer 2007

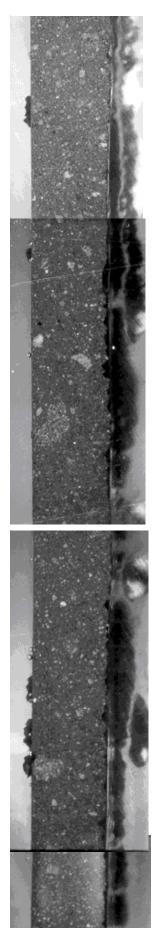



Lunar Sample Compendium C Meyer 2007

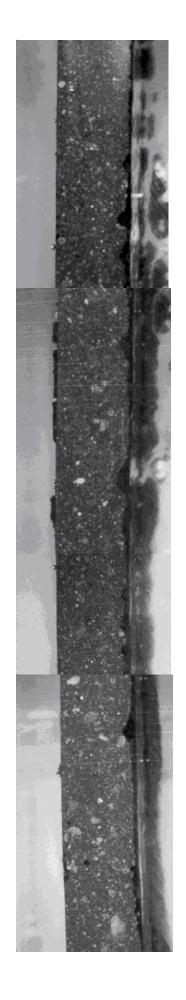

Lunar Sample Compendium C Meyer 2007

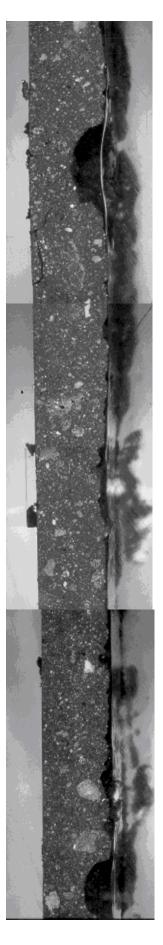

(note: presumably 5 mm was removed form the top of each segment)

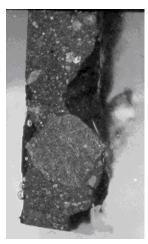
Lunar Sample Compendium C Meyer 2007



depth = 251.2 cm (a la Allton and Waltz)


70002, epoxy encapsulated core




Lunar Sample Compendium C Meyer 2007

Lunar Sample Compendium C Meyer 2007

bottom of 70002

70001 was not dissected lengthwise and there is no encapsulated portion

Lunar Sample Compendium C Meyer 2007