Northwest Africa 4898
Unbrecciated basalt
137 g

Figure 1: Slice through NWA 4898, with close up of matrix (upper right) and 1 cm cube for scale.

Introduction
Northwest Africa 4898 (Fig. 1) was found in northwest Africa in 2007, and consists of one fragment almost completely covered with fusion crust and weighing 137 g (Connolly et al., 2008). Inspection of the interior reveals it basaltic texture (Fig. 1).

Petrography and Mineralogy
The texture of this sample is spherulitic with lath-shaped plagioclase, pyroxene, and skeletal ilmenite. Olivine is present as larger crystals (Fa$_{26.3-27.2}$; FeO/MnO = 73-92), and often contains chromite inclusions. The calcic plagioclase (An$_{92.6-96.5}$) has been completely transformed into maskelynite during shock metamorphism. And the pyroxenes (Fs$_{25.1-58.7}$Wo$_{13.2-34}$; FeO/MnO = 42-76) are compositionally zoned Ti-rich pigeonite and augite. FeNi-metal and troilite are present as minor phases (Connolly et al., 2008).
Chemistry and Radiogenic age dating

INAA analyses of 6 small (133 mg total) chips of NWA 4898 reveal its low FeO nature (Table 1) and Eu anomaly (Fig. 2). A whole rock Rb-Sr isochron based on three measurements from NWA 4898 yields an age of 3.58 Ga (Fig. 3; Gaffney et al., 2008). Additional Nd isotopic analyses show that NWA 4898 may have been derived from one of the most LREE depleted lunar mantle sources known (Fig. 4; Gaffney et al., 2008).

Cosmogenic isotopes and exposure ages

None yet reported.
Table 1. Chemical composition of NWA 4898

<table>
<thead>
<tr>
<th>Reference</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>133</td>
</tr>
<tr>
<td>Technique</td>
<td>INAA</td>
</tr>
<tr>
<td>SiO₂ %</td>
<td>-</td>
</tr>
<tr>
<td>TiO₂</td>
<td>-</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>-</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>-</td>
</tr>
<tr>
<td>FeO</td>
<td>17.2</td>
</tr>
<tr>
<td>MnO</td>
<td>-</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
</tr>
<tr>
<td>CaO</td>
<td>-</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.296</td>
</tr>
<tr>
<td>K₂O</td>
<td>-</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>-</td>
</tr>
<tr>
<td>S %</td>
<td>-</td>
</tr>
<tr>
<td>Sum</td>
<td>-</td>
</tr>
<tr>
<td>Sc ppm</td>
<td>65.4</td>
</tr>
<tr>
<td>V</td>
<td>3020</td>
</tr>
<tr>
<td>Cr</td>
<td><180</td>
</tr>
<tr>
<td>Co</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
</tr>
<tr>
<td>Cu</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>-</td>
</tr>
<tr>
<td>Ga</td>
<td>-</td>
</tr>
<tr>
<td>Ge</td>
<td>-</td>
</tr>
<tr>
<td>As</td>
<td>-</td>
</tr>
<tr>
<td>Se</td>
<td>-</td>
</tr>
<tr>
<td>Rb</td>
<td>-</td>
</tr>
<tr>
<td>Sr</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Zr</td>
<td>-</td>
</tr>
<tr>
<td>Nb</td>
<td>-</td>
</tr>
<tr>
<td>Mo</td>
<td>-</td>
</tr>
<tr>
<td>Ru</td>
<td>-</td>
</tr>
<tr>
<td>Rh</td>
<td>-</td>
</tr>
<tr>
<td>Pd ppb</td>
<td>-</td>
</tr>
<tr>
<td>Ag ppb</td>
<td>-</td>
</tr>
<tr>
<td>Cd ppb</td>
<td>-</td>
</tr>
<tr>
<td>In ppb</td>
<td>-</td>
</tr>
<tr>
<td>Sn ppb</td>
<td>-</td>
</tr>
<tr>
<td>Sb ppb</td>
<td>-</td>
</tr>
<tr>
<td>Te ppb</td>
<td>-</td>
</tr>
<tr>
<td>Cs ppm</td>
<td>Ba</td>
</tr>
<tr>
<td>Ba</td>
<td>-</td>
</tr>
<tr>
<td>La</td>
<td>-</td>
</tr>
<tr>
<td>Ce</td>
<td>-</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
</tr>
<tr>
<td>Sm</td>
<td>4.55</td>
</tr>
<tr>
<td>Eu</td>
<td>0.997</td>
</tr>
<tr>
<td>Nd</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Hf</td>
<td>-</td>
</tr>
<tr>
<td>Ta</td>
<td>-</td>
</tr>
<tr>
<td>W ppb</td>
<td>-</td>
</tr>
<tr>
<td>Re ppb</td>
<td>-</td>
</tr>
<tr>
<td>Os ppb</td>
<td>-</td>
</tr>
<tr>
<td>Ir ppb</td>
<td>-</td>
</tr>
<tr>
<td>Pt ppb</td>
<td>-</td>
</tr>
<tr>
<td>Au ppb</td>
<td>-</td>
</tr>
<tr>
<td>Th ppm</td>
<td>0.44</td>
</tr>
<tr>
<td>U ppm</td>
<td>-</td>
</tr>
</tbody>
</table>

References: 1) Korotev et al. (2008).

K. Righter, Lunar Meteorite Compendium, 2008